Welcome to the Biomedical Informatics Lab of Prof. Dr. Gunnar Rätsch

The research in our group lies at the interface between methods research in Machine Learning, Genomics and Medical Informatics and relevant applications in biology and medicine.

We develop new analysis techniques that are capable of dealing with large amounts of medical and genomic data. These techniques aim to provide accurate predictions on the phenomenon at hand and to comprehensibly provide reasons for their prognoses, and thereby assist in gaining new biomedical insights.

Current research includes a) Machine Learning related to time-series analysis and iterative optimization algorithms, b) methods for transcriptome analyses to study transcriptome alterations in cancer, c) developing clinical decision support systems, in particular, for time series data from intensive care units, d) new graph genome algorithms to store and analyze very large sets of genomic sequences, and e) developing methods and resources for international sharing of genomic and clinical data, for instance, about variants in BRCA1/2.

Abstract Macrophages tailor their function according to the signals found in tissue microenvironments, assuming a wide spectrum of phenotypes. A detailed understanding of macrophage phenotypes in human tissues is limited. Using single-cell RNA sequencing, we defined distinct macrophage subsets in the joints of patients with the autoimmune disease rheumatoid arthritis (RA), which affects ~1% of the population. The subset we refer to as HBEGF+ inflammatory macrophages is enriched in RA tissues and is shaped by resident fibroblasts and the cytokine tumor necrosis factor (TNF). These macrophages promoted fibroblast invasiveness in an epidermal growth factor receptor–dependent manner, indicating that intercellular cross-talk in this inflamed setting reshapes both cell types and contributes to fibroblast-mediated joint destruction. In an ex vivo synovial tissue assay, most medications used to treat RA patients targeted HBEGF+ inflammatory macrophages; however, in some cases, medication redirected them into a state that is not expected to resolve inflammation. These data highlight how advances in our understanding of chronically inflamed human tissues and the effects of medications therein can be achieved by studies on local macrophage phenotypes and intercellular interactions.

Authors David Kuo, Jennifer Ding, Ian Cohn, Fan Zhang, Kevin Wei, Deepak Rao, Cristina Rozo, Upneet K Sokhi, Sara Shanaj, David J. Oliver, Adriana P. Echeverria, Edward F. DiCarlo, Michael B. Brenner, Vivian P. Bykerk, Susan M. Goodman, Soumya Raychaudhuri, Gunnar Rätsch, Lionel B. Ivashkiv, Laura T. Donlin

Submitted Science Translational Medicine

Link DOI

Abstract Intensive care clinicians are presented with large quantities of patient information and measurements from a multitude of monitoring systems. The limited ability of humans to process such complex information hinders physicians to readily recognize and act on early signs of patient deterioration. We used machine learning to develop an early warning system for circulatory failure based on a high-resolution ICU database with 240 patient years of data. This automatic system predicts 90.0% of circulatory failure events (prevalence 3.1%), with 81.8% identified more than two hours in advance, resulting in an area under the receiver operating characteristic curve of 94.0% and area under the precision-recall curve of 63.0%. The model was externally validated in a large independent patient cohort.

Authors Stephanie Hyland, Martin Faltys, Matthias Hüser, Xinrui Lyu, Thomas Gumbsch, Cristóbal Esteban, Christian Bock, Max Horn, Michael Moor, Bastian Rieck, Marc Zimmermann, Dean Bodenham, Karsten Borgwardt, Gunnar Rätsch, Tobias M. Merz

Submitted arXiv Preprints


Abstract Objective: Intracranial hypertension is an important risk factor of secondary brain damage after traumatic brain injury. Hypertensive episodes are often diagnosed reactively and time is lost before counteractive measures are taken. A pro-active approach that predicts critical events ahead of time could be beneficial for the patient. Methods: We developed a prediction framework that forecasts onsets of intracranial hypertension in the next 8 hours. Its main innovation is the joint use of cerebral auto-regulation indices, spectral energies and morphological pulse metrics to describe the neurological state. One-minute base windows were compressed by computing signal metrics, and then stored in a multi-scale history, from which physiological features were derived. Results: Our model predicted intracranial hypertension up to 8 hours in advance with alarm recall rates of 90% at a precision of 36% in the MIMIC-II waveform database, improving upon two baselines from the literature. We found that features derived from high-frequency waveforms substantially improved the prediction performance over simple statistical summaries, in which each of the three feature categories contributed to the performance gain. The inclusion of long-term history up to 8 hours was especially important. Conclusion: Our approach showed promising performance and enabled us to gain insights about the critical components of prediction models for intracranial hypertension. Significance: Our results highlight the importance of information contained in high-frequency waveforms in the neurological intensive care unit. They could motivate future studies on pre-hypertensive patterns and the design of new alarm algorithms for critical events in the injured brain.

Authors Matthias Hüser, Adrian Kündig, Walter Karlen, Valeria De Luca, Martin Jaggi

Submitted arXiv Preprints


Abstract In this paper, we propose the first practical algorithm to minimize stochastic composite optimization problems over compact convex sets. This template allows for affine constraints and therefore covers stochastic semidefinite programs (SDPs), which are vastly applicable in both machine learning and statistics. In this setup, stochastic algorithms with convergence guarantees are either not known or not tractable. We tackle this general problem and propose a convergent, easy to implement and tractable algorithm. We prove $\mathcal{O}(k^{-1/3})$ convergence rate in expectation on the objective residual and $\mathcal{O}(k^{-5/12})$ in expectation on the feasibility gap. These rates are achieved without increasing the batchsize, which can contain a single sample. We present extensive empirical evidence demonstrating the superiority of our algorithm on a broad range of applications including optimization of stochastic SDPs.

Authors Francesco Locatello, Alp Yurtsever, Olivier Fercoq, Volkan Cevher

Submitted ArXiv

Link DOI

Abstract The BRCA Challenge is a long-term data-sharing project initiated within the Global Alliance for Genomics and Health (GA4GH) to aggregate BRCA1 and BRCA2 data to support highly collaborative research activities. Its goal is to generate an informed and current understanding of the impact of genetic variation on cancer risk across the iconic cancer predisposition genes, BRCA1 and BRCA2. Initially, reported variants in BRCA1 and BRCA2 available from public databases were integrated into a single, newly created site, www.brcaexchange.org. The purpose of the BRCA Exchange is to provide the community with a reliable and easily accessible record of variants interpreted for a high-penetrance phenotype. More than 20,000 variants have been aggregated, three times the number found in the next-largest public database at the project’s outset, of which approximately 7,250 have expert classifications. The data set is based on shared information from existing clinical databases—Breast Cancer Information Core (BIC), ClinVar, and the Leiden Open Variation Database (LOVD)—as well as population databases, all linked to a single point of access. The BRCA Challenge has brought together the existing international Evidence-based Network for the Interpretation of Germline Mutant Alleles (ENIGMA) consortium expert panel, along with expert clinicians, diagnosticians, researchers, and database providers, all with a common goal of advancing our understanding of BRCA1 and BRCA2 variation. Ongoing work includes direct contact with national centers with access to BRCA1 and BRCA2 diagnostic data to encourage data sharing, development of methods suitable for extraction of genetic variation at the level of individual laboratory reports, and engagement with participant communities to enable a more comprehensive understanding of the clinical significance of genetic variation in BRCA1 and BRCA2.

Authors Melissa S. Cline , Rachel G. Liao , Michael T. Parsons , Benedict Paten , Faisal Alquaddoomi, Antonis Antoniou, Samantha Baxter, Larry Brody, Robert Cook-Deegan, Amy Coffin, Fergus J. Couch, Brian Craft, Robert Currie, Chloe C. Dlott, Lena Dolman, Johan T. den Dunnen, Stephanie O. M. Dyke, Susan M. Domchek, Douglas Easton, Zachary Fischmann, William D. Foulkes, Judy Garber, David Goldgar, Mary J. Goldman, Peter Goodhand, Steven Harrison, David Haussler, Kazuto Kato, Bartha Knoppers, Charles Markello, Robert Nussbaum, Kenneth Offit, Sharon E. Plon, Jem Rashbass, Heidi L. Rehm, Mark Robson, Wendy S. Rubinstein, Dominique Stoppa-Lyonnet, Sean Tavtigian, Adrian Thorogood, Can Zhang, Marc Zimmermann, BRCA Challenge Authors , John Burn , Stephen Chanock , Gunnar Rätsch , Amanda B. Spurdle

Submitted PLOS Genetics

Link DOI