The BMI lab bridges research in Machine Learning and Sequence Analysis methodology research and its application to biomedical problems. We collaborate with biologists and clinicians to develop real-world solutions.
We work on research questions and foundational challenges in storing, analysing, and searching extensive heterogeneous and temporal data, especially in the biomedical domain. Our lab members address technical and non-technical research questions in collaboration with biologists and clinicians. At the research group’s core is an active knowledge exchange in both directions between the methods and the application-driven researchers.
The emergence of data-driven medicine leverages data and algorithms to shape how we diagnose and treat patients. Machine Learning approaches allow us to capitalise on the vast amount of data produced in clinical settings to generate novel biomedical insights and build more precise predictive models of disease outcomes and treatment efficacy.
We work towards this transformation mainly but not exclusively in two key areas. One key application area is the analysis of heterogeneous data of cancer patients. For Genomics, we develop algorithms for storing, compressing, and searching extensive genomics datasets. Another key area is the development of time series models of patient health states and early warning systems for intensive care units.
Publications
Abstract Selecting hyperparameters in deep learning greatly impacts its effectiveness but requires manual effort and expertise. Recent works show that Bayesian model selection with Laplace approximations can allow to optimize such hyperparameters just like standard neural network parameters using gradients and on the training data. However, estimating a single hyperparameter gradient requires a pass through the entire dataset, limiting the scalability of such algorithms. In this work, we overcome this issue by introducing lower bounds to the linearized Laplace approximation of the marginal likelihood. In contrast to previous estimators, these bounds are amenable to stochastic-gradient-based optimization and allow to trade off estimation accuracy against computational complexity. We derive them using the function-space form of the linearized Laplace, which can be estimated using the neural tangent kernel. Experimentally, we show that the estimators can significantly accelerate gradient-based hyperparameter optimization.
Authors Alexander Immer, Tycho FA van der Ouderaa, Mark van der Wilk, Gunnar Rätsch, Bernhard Schölkopf
Submitted ICML 2023
Abstract Models that can predict the occurrence of events ahead of time with low false-alarm rates are critical to the acceptance of decision support systems in the medical community. This challenging task is typically treated as a simple binary classification, ignoring temporal dependencies between samples, whereas we propose to exploit this structure. We first introduce a common theoretical framework unifying dynamic survival analysis and early event prediction. Following an analysis of objectives from both fields, we propose Temporal Label Smoothing (TLS), a simpler, yet best-performing method that preserves prediction monotonicity over time. By focusing the objective on areas with a stronger predictive signal, TLS improves performance over all baselines on two large-scale benchmark tasks. Gains are particularly notable along clinically relevant measures, such as event recall at low false-alarm rates. TLS reduces the number of missed events by up to a factor of two over previously used approaches in early event prediction.
Authors Hugo Yèche, Alizée Pace, Gunnar Rätsch, Rita Kuznetsova
Submitted ICML 2023
Abstract Understanding and predicting molecular responses towards external perturbations is a core question in molecular biology. Technological advancements in the recent past have enabled the generation of high-resolution single-cell data, making it possible to profile individual cells under different experimentally controlled perturbations. However, cells are typically destroyed during measurement, resulting in unpaired distributions over either perturbed or non-perturbed cells. Leveraging the theory of optimal transport and the recent advents of convex neural architectures, we learn a coupling describing the response of cell populations upon perturbation, enabling us to predict state trajectories on a single-cell level. We apply our approach, CellOT, to predict treatment responses of 21,650 cells subject to four different drug perturbations. CellOT outperforms current state-of-the-art methods both qualitatively and quantitatively, accurately capturing cellular behavior shifts across all different drugs.
Authors Charlotte Bunne, Stefan Stark, Gabriele Gut, Jacobo Sarabia del Castillo, Mitchell Levesque, Kjong Van Lehmann, Lucas Pelkmans, Andreas Krause, Gunnar Rätsch
Submitted BioRxiv
Abstract The recent success of machine learning methods applied to time series collected from Intensive Care Units (ICU) exposes the lack of standardized machine learning benchmarks for developing and comparing such methods. While raw datasets, such as MIMIC-IV or eICU, can be freely accessed on Physionet, the choice of tasks and pre-processing is often chosen ad-hoc for each publication, limiting comparability across publications. In this work, we aim to improve this situation by providing a benchmark covering a large spectrum of ICU-related tasks. Using the HiRID dataset, we define multiple clinically relevant tasks in collaboration with clinicians. In addition, we provide a reproducible end-to-end pipeline to construct both data and labels. Finally, we provide an in-depth analysis of current state-of-the-art sequence modeling methods, highlighting some limitations of deep learning approaches for this type of data. With this benchmark, we hope to give the research community the possibility of a fair comparison of their work.
Authors Hugo Yèche, Rita Kuznetsova, Marc Zimmermann, Matthias Hüser, Xinrui Lyu, Martin Faltys, Gunnar Rätsch
Submitted NeurIPS 2021 (Datasets and Benchmarks)
Abstract Clustering high-dimensional data, such as images or biological measurements, is a long-standing problem and has been studied extensively. Recently, Deep Clustering gained popularity due to its flexibility in fitting the specific peculiarities of complex data. Here we introduce the Mixture-of-Experts Similarity Variational Autoencoder (MoE-Sim-VAE), a novel generative clustering model. The model can learn multi-modal distributions of high-dimensional data and use these to generate realistic data with high efficacy and efficiency. MoE-Sim-VAE is based on a Variational Autoencoder (VAE), where the decoder consists of a Mixture-of-Experts (MoE) architecture. This specific architecture allows for various modes of the data to be automatically learned by means of the experts. Additionally, we encourage the lower dimensional latent representation of our model to follow a Gaussian mixture distribution and to accurately represent the similarities between the data points. We assess the performance of our model on the MNIST benchmark data set and a challenging real-world task of defining cell subpopulations from mass cytometry (CyTOF) measurements on hundreds of different datasets. MoE-Sim-VAE exhibits superior clustering performance on all these tasks in comparison to the baselines as well as competitor methods and we show that the MoE architecture in the decoder reduces the computational cost of sampling specific data modes with high fidelity.
Authors Andreas Kopf, Vincent Fortuin, Vignesh Ram Somnath, Manfred Claassen
Submitted PLOS Computational Biology