Stefan Stark,

"Take chances, make mistakes, get messy!" - Ms. Frizzle, Magic School Bus

Research Assistant

+41 44 632 23 74
ETH Zürich
Department of Computer Science
Biomedical Informatics Group Universitätsstrasse 6
CAB F52.1
8092 Zürich
CAB F52.1

I am a research assistant in the Biomedical Informatics Group and masters student in Computer Science

In 2014 I received my Bachelor’s degree in mathematics from New York University and joined the lab shortly after while it was located at Memorial Sloan Kettering Cancer Center in New York City.

I am interested in scaling probabilistic models to clinical data sets. I also contribute to the cancer genomics efforts TCGA PanCanAtlas and ICGC Pan-Cancer Analysis Group.

Abstract Our comprehensive analysis of alternative splicing across 32 The Cancer Genome Atlas cancer types from 8,705 patients detects alternative splicing events and tumor variants by reanalyzing RNA and whole-exome sequencing data. Tumors have up to 30% more alternative splicing events than normal samples. Association analysis of somatic variants with alternative splicing events confirmed known trans associations with variants in SF3B1 and U2AF1 and identified additional trans-acting variants (e.g., TADA1, PPP2R1A). Many tumors have thousands of alternative splicing events not detectable in normal samples; on average, we identified ≈930 exon-exon junctions (“neojunctions”) in tumors not typically found in GTEx normals. From Clinical Proteomic Tumor Analysis Consortium data available for breast and ovarian tumor samples, we confirmed ≈1.7 neojunction- and ≈0.6 single nucleotide variant-derived peptides per tumor sample that are also predicted major histocompatibility complex-I binders (“putative neoantigens”).

Authors Andre Kahles, Kjong-Van Lehmann, Nora C. Toussaint, Matthias Hüser, Stefan Stark, Timo Sachsenberg, Oliver Stegle, Oliver Kohlbacher, Chris Sander, Gunnar Rätsch, The Cancer Genome Atlas Research Network

Submitted Cancer Cell

Link DOI

Abstract We present the most comprehensive catalogue of cancer-associated gene alterations through characterization of tumor transcriptomes from 1,188 donors of the Pan-Cancer Analysis of Whole Genomes project. Using matched whole-genome sequencing data, we attributed RNA alterations to germline and somatic DNA alterations, revealing likely genetic mechanisms. We identified 444 associations of gene expression with somatic non-coding single-nucleotide variants. We found 1,872 splicing alterations associated with somatic mutation in intronic regions, including novel exonization events associated with Alu elements. Somatic copy number alterations were the major driver of total gene and allele-specific expression (ASE) variation. Additionally, 82% of gene fusions had structural variant support, including 75 of a novel class called "bridged" fusions, in which a third genomic location bridged two different genes. Globally, we observe transcriptomic alteration signatures that differ between cancer types and have associations with DNA mutational signatures. Given this unique dataset of RNA alterations, we also identified 1,012 genes significantly altered through both DNA and RNA mechanisms. Our study represents an extensive catalog of RNA alterations and reveals new insights into the heterogeneous molecular mechanisms of cancer gene alterations.

Authors Claudia Calabrese, Natalie R Davidson, Nuno A Fonseca, Yao He, André Kahles, Kjong-Van Lehmann, Fenglin Liu, Yuichi Shiraishi, Cameron M Soulette, Lara Urban, Deniz Demircioğlu, Liliana Greger, Siliang Li, Dongbing Liu, Marc D Perry, Linda Xiang, Fan Zhang, Junjun Zhang, Peter Bailey, Serap Erkek, Katherine A Hoadley, Yong Hou, Helena Kilpinen, Jan O Korbel, Maximillian G Marin, Julia Markowski, Tannistha Nandi, Qiang Pan-Hammarström, Chandra S Pedamallu, Reiner Siebert, Stefan G Stark, Hong Su, Patrick Tan, Sebastian M Waszak, Christina Yung, Shida Zhu, Philip Awadalla, Chad J Creighton, Matthew Meyerson, B Francis F Ouellette, Kui Wu, Huanming Yang, Alvis Brazma, Angela N Brooks, Jonathan Göke, Gunnar Rätsch, Roland F Schwarz, Oliver Stegle, Zemin Zhang

Submitted bioRxiv

Link DOI

Authors Julia Vogt, Marius Kloft, Stefan Stark, S S Raman, S Prabhakaran, V Roth, Gunnar Rätsch

Submitted Machine Learning

Link DOI