Mikhail Karasikov, MSc

PhD Student

E-Mail
​mikhaika@get-your-addresses-elsewhere.inf.ethz.ch​
Phone
+41 43 254 0224
Address
Biomedical Informatics Group
Schmelzbergstrasse 26
8006 Zürich
Room
SHM 26 B 3

I am broadly interested in machine learning and bioinformatics. Currently, I am developing data structures for the genome assembly.

I graduated from the Moscow Institute of Physics and Technology studying data science at the Department of Control and Applied Mathematics.

Abstract Much of the DNA and RNA sequencing data available is in the form of high-throughput sequencing (HTS) reads and is currently unindexed by established sequence search databases. Recent succinct data structures for indexing both reference sequences and HTS data, along with associated metadata, have been based on either hashing or graph models, but many of these structures are static in nature, and thus, not well-suited as backends for dynamic databases. We propose a parallel construction method for and novel application of the wavelet trie as a dynamic data structure for compressing and indexing graph metadata. By developing an algorithm for merging wavelet tries, we are able to construct large tries in parallel by merging smaller tries constructed concurrently from batches of data. When compared against general compression algorithms and those developed specifically for graph colors (VARI and Rainbowfish), our method achieves compression ratios superior to gzip and VARI, converging to compression ratios of 6.5% to 2% on data sets constructed from over 600 virus genomes. While marginally worse than compression by bzip2 or Rainbowfish, this structure allows for both fast extension and query. We also found that additionally encoding graph topology metadata improved compression ratios, particularly on data sets consisting of several mutually-exclusive reference genomes. It was also observed that the compression ratio of wavelet tries grew sublinearly with the density of the annotation matrices. This work is a significant step towards implementing a dynamic data structure for indexing large annotated sequence data sets that supports fast query and update operations. At the time of writing, no established standard tool has filled this niche.

Authors Harun Mustafa, Andre Kahles, Mikhail Karasikov, Gunnar Raetsch

Submitted bioRxiv

Link DOI