Joanna Ficek-Pascual, M.Sc. in Biostatistics

"Success is not final, failure is not fatal; it is the courage to continue that counts.” W. Churchill

Alumni

E-Mail
joanna.ficek@get-your-addresses-elsewhere.inf.ethz.ch
Address
Biomedical Informatics Group
Schmelzbergstrasse 26
SHM 26 C4
8006 Zürich
Room
SHM 26 C4

My interest lies in biomedical data analytics, integrating knowledge across domains and applying statistical and Machine Learning methods to address biological questions. My experience ranges from mathematical foundations to computational biology, with the current focus on AI-assisted clinical diagnosis and investigating molecular mechanisms of cancer by leveraging large-scale multi-omics data.

I studied Mathematics (B.Sc.) at the Jagiellonian University in Krakow, Poland, with academic exchange at the University of Bath, UK. I further obtained an M.Sc. in Biostatistics from the Ludwig-Maximilians-Universität (LMU) München, Germany, with a fellowship from DAAD. Parallel to and between the degrees, I gathered experience in working with clinical data (Galen Ortopedia, Poland), analyzing genomic data (Institute of Pharmacology, Polish Academy of Sciences, Poland), as well as in statistical consulting (StaBLab LMU, Germany). 

In October 2018, I joined the Rätsch lab as a PhD student, and since then, I have been involved in exciting interdisciplinary projects focused on dissecting cancer heterogeneity. My PhD has been embedded within the Swiss Tumor Profiler Study, which enabled deep profiling of samples from cancer patients using multiple established and cutting-edge technologies. Analysis and integration of the resulting data, including the development of new dedicated methods, as well as learning across data modalities, have been the focus of my research. 

Abstract Spatial transcriptomics enables in-depth molecular characterization of samples on a morphology and RNA level while preserving spatial location. Integrating the resulting multi-modal data is an unsolved problem, and developing new solutions in precision medicine depends on improved methodologies. Here, we introduce AESTETIK, a convolutional deep learning model that jointly integrates spatial, transcriptomics, and morphology information to learn accurate spot representations. AESTETIK yielded substantially improved cluster assignments on widely adopted technology platforms (e.g., 10x Genomics™, NanoString™) across multiple datasets. We achieved performance enhancement on structured tissues (e.g., brain) with a 21% increase in median ARI over previous state-of-the-art methods. Notably, AESTETIK also demonstrated superior performance on cancer tissues with heterogeneous cell populations, showing a two-fold increase in breast cancer, 79% in melanoma, and 21% in liver cancer. We expect that these advances will enable a multi-modal understanding of key biological processes.

Authors Kalin Nonchev, Sonali Andani, Joanna Ficek-Pascual, Marta Nowak, Bettina Sobottka, Tumor Profiler Consortium, Viktor Hendrik Koelzer, and Gunnar Rätsch

Submitted MedRxiv

Link DOI

Authors Sonali Andani, Boqi Chen, Joanna Ficek-Pascual, Simon Heinke, Ruben Casanova, Bettina Sobottka, Bernd Bodenmiller, Tumor Profiler Consortium, Viktor H Kölzer, Gunnar Rätsch

Submitted medRxiv

Abstract Dynamic assessment of mortality risk in the intensive care unit (ICU) can be used to stratify patients, inform about treatment effectiveness or serve as part of an early-warning system. Static risk scoring systems, such as APACHE or SAPS, have recently been supplemented with data-driven approaches that track the dynamic mortality risk over time. Recent works have focused on enhancing the information delivered to clinicians even further by producing full survival distributions instead of point predictions or fixed horizon risks. In this work, we propose a non-parametric ensemble model, Weighted Resolution Survival Ensemble (WRSE), tailored to estimate such dynamic individual survival distributions. Inspired by the simplicity and robustness of ensemble methods, the proposed approach combines a set of binary classifiers spaced according to a decay function reflecting the relevance of short-term mortality predictions. Models and baselines are evaluated under weighted calibration and discrimination metrics for individual survival distributions which closely reflect the utility of a model in ICU practice. We show competitive results with state-of-the-art probabilistic models, while greatly reducing training time by factors of 2-9x.

Authors Jonathan Heitz, Joanna Ficek-Pascual, Martin Faltys, Tobias M. Merz, Gunnar Rätsch, Matthias Hüser

Submitted Proceedings of the AAAI-2021 - Spring Symposium on Survival Prediction

Link

Abstract The application and integration of molecular profiling technologies create novel opportunities for personalized medicine. Here, we introduce the Tumor Profiler Study, an observational trial combining a prospective diagnostic approach to assess the relevance of in-depth tumor profiling to support clinical decision-making with an exploratory approach to improve the biological understanding of the disease.

Authors Anja Irmisch, Ximena Bonilla, Stéphane Chevrier, Kjong-Van Lehmann, Franziska Singer, Nora C. Toussaint, Cinzia Esposito, Julien Mena, Emanuela S. Milani, Ruben Casanova, Daniel J. Stekhoven, Rebekka Wegmann, Francis Jacob, Bettina Sobottka, Sandra Goetze, Jack Kuipers, Jacobo Sarabia del Castillo, Michael Prummer, Mustafa A. Tuncel, Ulrike Menzel, Andrea Jacobs, Stefanie Engler, Sujana Sivapatham, Anja L. Frei, Gabriele Gut, Joanna Ficek-Pascual, Nicola Miglino, Melike Ak, Faisal S. Al-Quaddoomi, Jonas Albinus, Ilaria Alborelli, Sonali Andani, Per-Olof Attinger, Daniel Baumhoer, Beatrice Beck-Schimmer, Lara Bernasconi, Anne Bertolini, Natalia Chicherova, Maya D'Costa, Esther Danenberg, Natalie Davidson, Monica-Andreea Drăgan, Martin Erkens, Katja Eschbach, André Fedier, Pedro Ferreira, Bruno Frey, Linda Grob, Detlef Günther, Martina Haberecker, Pirmin Haeuptle, Sylvia Herter, Rene Holtackers, Tamara Huesser, Tim M. Jaeger, Katharina Jahn, Alva R. James, Philip M. Jermann, André Kahles, Abdullah Kahraman, Werner Kuebler, Christian P. Kunze, Christian Kurzeder, Sebastian Lugert, Gerd Maass, Philipp Markolin, Julian M. Metzler, Simone Muenst, Riccardo Murri, Charlotte K.Y. Ng, Stefan Nicolet, Marta Nowak, Patrick G.A. Pedrioli, Salvatore Piscuoglio, Mathilde Ritter, Christian Rommel, María L. Rosano-González, Natascha Santacroce, Ramona Schlenker, Petra C. Schwalie, Severin Schwan, Tobias Schär, Gabriela Senti, Vipin T. Sreedharan, Stefan Stark, Tinu M. Thomas, Vinko Tosevski, Marina Tusup, Audrey Van Drogen, Marcus Vetter, Tatjana Vlajnic, Sandra Weber, Walter P. Weber, Michael Weller, Fabian Wendt, Norbert Wey, Mattheus H.E. Wildschut, Shuqing Yu, Johanna Ziegler, Marc Zimmermann, Martin Zoche, Gregor Zuend, Rudolf Aebersold, Marina Bacac, Niko Beerenwinkel, Christian Beisel, Bernd Bodenmiller, Reinhard Dummer, Viola Heinzelmann-Schwarz, Viktor H. Koelzer, Markus G. Manz, Holger Moch, Lucas Pelkmans, Berend Snijder, Alexandre P.A. Theocharides, Markus Tolnay, Andreas Wicki, Bernd Wollscheid, Gunnar Rätsch, Mitchell P. Levesque

Submitted Cancer Cell (Commentary)

Link DOI

Abstract Motivation Recent technological advances have led to an increase in the production and availability of single-cell data. The ability to integrate a set of multi-technology measurements would allow the identification of biologically or clinically meaningful observations through the unification of the perspectives afforded by each technology. In most cases, however, profiling technologies consume the used cells and thus pairwise correspondences between datasets are lost. Due to the sheer size single-cell datasets can acquire, scalable algorithms that are able to universally match single-cell measurements carried out in one cell to its corresponding sibling in another technology are needed. Results We propose Single-Cell data Integration via Matching (SCIM), a scalable approach to recover such correspondences in two or more technologies. SCIM assumes that cells share a common (low-dimensional) underlying structure and that the underlying cell distribution is approximately constant across technologies. It constructs a technology-invariant latent space using an autoencoder framework with an adversarial objective. Multi-modal datasets are integrated by pairing cells across technologies using a bipartite matching scheme that operates on the low-dimensional latent representations. We evaluate SCIM on a simulated cellular branching process and show that the cell-to-cell matches derived by SCIM reflect the same pseudotime on the simulated dataset. Moreover, we apply our method to two real-world scenarios, a melanoma tumor sample and a human bone marrow sample, where we pair cells from a scRNA dataset to their sibling cells in a CyTOF dataset achieving 90% and 78% cell-matching accuracy for each one of the samples, respectively.

Authors Stefan G Stark, Joanna Ficek-Pascual, Francesco Locatello, Ximena Bonilla, Stéphane Chevrier, Franziska Singer, Tumor Profiler Consortium, Gunnar Rätsch, Kjong-Van Lehmann

Submitted Bioinformatics

Link DOI