Alexander Immer, MSc
"You can’t connect the dots looking forward; you can only connect them looking backwards." - Steve Jobs
PhD Student
- alexander.immer@ inf.ethz.ch
- @a1mmer
I am interested in probabilistic inference for flexible models like neural networks and how it can help improving biomedical applications.
I received my BSc in IT-Systems Engineering from Hasso Plattner Institute in Potsdam where I first got in contact with data science. During my MSc studies at EPFL, I became interested in approximate Bayesian inference which I further pursued during my time at RIKEN AIP in Tokyo. Since July 2020, I am a PhD student within the Max-Planck ETH Center for Learning Systems where I am supervised by Gunnar Rätsch and Bernhard Schölkopf. My goal is to design machine learning algorithms that can incorporate prior knowledge, quantify uncertainty, and automatically select the most likely model given data. Apart from that, these algorithms need to be practical and interpretable to be relevant to biomedical applications.
Please consult my website for details on current and previous projects.
Latest Publications
Abstract Flexibly quantifying both irreducible aleatoric and model-dependent epistemic uncertainties plays an important role for complex regression problems. While deep neural networks in principle can provide this flexibility and learn heteroscedastic aleatoric uncertainties through non-linear functions, recent works highlight that maximizing the log likelihood objective parameterized by mean and variance can lead to compromised mean fits since the gradient are scaled by the predictive variance, and propose adjustments in line with this premise. We instead propose to use the natural parametrization of the Gaussian, which has been shown to be more stable for heteroscedastic regression based on non-linear feature maps and Gaussian processes. Further, we emphasize the significance of principled regularization of the network parameters and prediction. We therefore propose an efficient Laplace approximation for heteroscedastic neural networks that allows automatic regularization through empirical Bayes and provides epistemic uncertainties, both of which improve generalization. We showcase on a range of regression problems—including a new heteroscedastic image regression benchmark—that our methods are scalable, improve over previous approaches for heteroscedastic regression, and provide epistemic uncertainty without requiring hyperparameter tuning.
Authors Alexander Immer, Emanuele Palumbo, Alexander Marx, Julia E Vogt
Submitted NeurIPS 2023
Abstract Convolutions encode equivariance symmetries into neural networks leading to better generalisation performance. However, symmetries provide fixed hard constraints on the functions a network can represent, need to be specified in advance, and can not be adapted. Our goal is to allow flexible symmetry constraints that can automatically be learned from data using gradients. Learning symmetry and associated weight connectivity structures from scratch is difficult for two reasons. First, it requires efficient and flexible parameterisations of layer-wise equivariances. Secondly, symmetries act as constraints and are therefore not encouraged by training losses measuring data fit. To overcome these challenges, we improve parameterisations of soft equivariance and learn the amount of equivariance in layers by optimising the marginal likelihood, estimated using differentiable Laplace approximations. The objective balances data fit and model complexity enabling layer-wise symmetry discovery in deep networks. We demonstrate the ability to automatically learn layer-wise equivariances on image classification tasks, achieving equivalent or improved performance over baselines with hard-coded symmetry.
Authors Tycho FA van der Ouderaa, Alexander Immer, Mark van der Wilk
Submitted NeurIPS 2023
Abstract The core components of many modern neural network architectures, such as transformers, convolutional, or graph neural networks, can be expressed as linear layers with . Kronecker-Factored Approximate Curvature (K-FAC), a second-order optimisation method, has shown promise to speed up neural network training and thereby reduce computational costs. However, there is currently no framework to apply it to generic architectures, specifically ones with linear weight-sharing layers. In this work, we identify two different settings of linear weight-sharing layers which motivate two flavours of K-FAC -- and . We show that they are exact for deep linear networks with weight-sharing in their respective setting. Notably, K-FAC-reduce is generally faster than K-FAC-expand, which we leverage to speed up automatic hyperparameter selection via optimising the marginal likelihood for a Wide ResNet. Finally, we observe little difference between these two K-FAC variations when using them to train both a graph neural network and a vision transformer. However, both variations are able to reach a fixed validation metric target in - of the number of steps of a first-order reference run, which translates into a comparable improvement in wall-clock time. This highlights the potential of applying K-FAC to modern neural network architectures.
Authors Runa Eschenhagen, Alexander Immer, Richard E Turner, Frank Schneider, Philipp Hennig
Submitted NeurIPS 2023
Abstract Selecting hyperparameters in deep learning greatly impacts its effectiveness but requires manual effort and expertise. Recent works show that Bayesian model selection with Laplace approximations can allow to optimize such hyperparameters just like standard neural network parameters using gradients and on the training data. However, estimating a single hyperparameter gradient requires a pass through the entire dataset, limiting the scalability of such algorithms. In this work, we overcome this issue by introducing lower bounds to the linearized Laplace approximation of the marginal likelihood. In contrast to previous estimators, these bounds are amenable to stochastic-gradient-based optimization and allow to trade off estimation accuracy against computational complexity. We derive them using the function-space form of the linearized Laplace, which can be estimated using the neural tangent kernel. Experimentally, we show that the estimators can significantly accelerate gradient-based hyperparameter optimization.
Authors Alexander Immer, Tycho FA van der Ouderaa, Mark van der Wilk, Gunnar Rätsch, Bernhard Schölkopf
Submitted ICML 2023
Abstract We study the class of location-scale or heteroscedastic noise models (LSNMs), in which the effect Y can be written as a function of the cause X and a noise source N independent of X, which may be scaled by a positive function g over the cause, i.e., Y=f(X)+g(X)N. Despite the generality of the model class, we show the causal direction is identifiable up to some pathological cases. To empirically validate these theoretical findings, we propose two estimators for LSNMs: an estimator based on (non-linear) feature maps, and one based on neural networks. Both model the conditional distribution of Y given X as a Gaussian parameterized by its natural parameters. When the feature maps are correctly specified, we prove that our estimator is jointly concave, and a consistent estimator for the cause-effect identification task. Although the the neural network does not inherit those guarantees, it can fit functions of arbitrary complexity, and reaches state-of-the-art performance across benchmarks.
Authors Alexander Immer, Christoph Schultheiss, Julia E Vogt, Bernhard Schölkopf, Peter Bühlmann, Alexander Marx
Submitted ICML 2023
Abstract Graph contrastive learning has shown great promise when labeled data is scarce, but large unlabeled datasets are available. However, it often does not take uncertainty estimation into account. We show that a variational Bayesian neural network approach can be used to improve not only the uncertainty estimates but also the downstream performance on semi-supervised node-classification tasks. Moreover, we propose a new measure of uncertainty for contrastive learning, that is based on the disagreement in likelihood due to different positive samples.
Authors Alexander Möllers, Alexander Immer, Elvin Isufi, Vincent Fortuin
Submitted AABI 2023
Abstract The linearized-Laplace approximation (LLA) has been shown to be effective and efficient in constructing Bayesian neural networks. It is theoretically compelling since it can be seen as a Gaussian process posterior with the mean function given by the neural network's maximum-a-posteriori predictive function and the covariance function induced by the empirical neural tangent kernel. However, while its efficacy has been studied in large-scale tasks like image classification, it has not been studied in sequential decision-making problems like Bayesian optimization where Gaussian processes -- with simple mean functions and kernels such as the radial basis function -- are the de-facto surrogate models. In this work, we study the usefulness of the LLA in Bayesian optimization and highlight its strong performance and flexibility. However, we also present some pitfalls that might arise and a potential problem with the LLA when the search space is unbounded.
Authors Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Vincent Fortuin
Submitted AABI 2023
Abstract Deep neural networks are highly effective but suffer from a lack of interpretability due to their black-box nature. Neural additive models (NAMs) solve this by separating into additive sub-networks, revealing the interactions between features and predictions. In this paper, we approach the NAM from a Bayesian perspective in order to quantify the uncertainty in the recovered interactions. Linearized Laplace approximation enables inference of these interactions directly in function space and yields a tractable estimate of the marginal likelihood, which can be used to perform implicit feature selection through an empirical Bayes procedure. Empirically, we show that Laplace-approximated NAMs (LA-NAM) are both more robust to noise and easier to interpret than their non-Bayesian counterpart for tabular regression and classification tasks.
Authors Kouroche Bouchiat, Alexander Immer, Hugo Yèche, Gunnar Rätsch, Vincent Fortuin
Submitted AABI 2023
Abstract Data augmentation is commonly applied to improve performance of deep learning by enforcing the knowledge that certain transformations on the input preserve the output. Currently, the used data augmentation is chosen by human effort and costly cross-validation, which makes it cumbersome to apply to new datasets. We develop a convenient gradient-based method for selecting the data augmentation without validation data and during training of a deep neural network. Our approach relies on phrasing data augmentation as an invariance in the prior distribution and learning it using Bayesian model selection, which has been shown to work in Gaussian processes, but not yet for deep neural networks. We propose a differentiable Kronecker-factored Laplace approximation to the marginal likelihood as our objective, which can be optimised without human supervision or validation data. We show that our method can successfully recover invariances present in the data, and that this improves generalisation and data efficiency on image datasets.
Authors Alexander Immer, Tycho FA van der Ouderaa, Gunnar Rätsch, Vincent Fortuin, Mark van der Wilk
Submitted NeurIPS 2022
Abstract Pre-trained contextual representations have led to dramatic performance improvements on a range of downstream tasks. This has motivated researchers to quantify and understand the linguistic information encoded in them. In general, this is done by probing, which consists of training a supervised model to predict a linguistic property from said representations. Unfortunately, this definition of probing has been subject to extensive criticism, and can lead to paradoxical or counter-intuitive results. In this work, we present a novel framework for probing where the goal is to evaluate the inductive bias of representations for a particular task, and provide a practical avenue to do this using Bayesian inference. We apply our framework to a series of token-, arc-, and sentence-level tasks. Our results suggest that our framework solves problems of previous approaches and that fastText can offer a better inductive bias than BERT in certain situations.
Authors Alexander Immer, Lucas Torroba Hennigen, Vincent Fortuin, Ryan Cotterell
Submitted ACL 2022
Abstract In recent years, the transformer has established itself as a workhorse in many applications ranging from natural language processing to reinforcement learning. Similarly, Bayesian deep learning has become the gold-standard for uncertainty estimation in safety-critical applications, where robustness and calibration are crucial. Surprisingly, no successful attempts to improve transformer models in terms of predictive uncertainty using Bayesian inference exist. In this work, we study this curiously underpopulated area of Bayesian transformers. We find that weight-space inference in transformers does not work well, regardless of the approximate posterior. We also find that the prior is at least partially at fault, but that it is very hard to find well-specified weight priors for these models. We hypothesize that these problems stem from the complexity of obtaining a meaningful mapping from weight-space to function-space distributions in the transformer. Therefore, moving closer to function-space, we propose a novel method based on the implicit reparameterization of the Dirichlet distribution to apply variational inference directly to the attention weights. We find that this proposed method performs competitively with our baselines.
Authors Tristan Cinquin, Alexander Immer, Max Horn, Vincent Fortuin
Submitted AABI 2022
Abstract Bayesian formulations of deep learning have been shown to have compelling theoretical properties and offer practical functional benefits, such as improved predictive uncertainty quantification and model selection. The Laplace approximation (LA) is a classic, and arguably the simplest family of approximations for the intractable posteriors of deep neural networks. Yet, despite its simplicity, the LA is not as popular as alternatives like variational Bayes or deep ensembles. This may be due to assumptions that the LA is expensive due to the involved Hessian computation, that it is difficult to implement, or that it yields inferior results. In this work we show that these are misconceptions: we (i) review the range of variants of the LA including versions with minimal cost overhead; (ii) introduce "laplace", an easy-to-use software library for PyTorch offering user-friendly access to all major flavors of the LA; and (iii) demonstrate through extensive experiments that the LA is competitive with more popular alternatives in terms of performance, while excelling in terms of computational cost. We hope that this work will serve as a catalyst to a wider adoption of the LA in practical deep learning, including in domains where Bayesian approaches are not typically considered at the moment.
Authors Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, Philipp Hennig
Submitted NeurIPS 2021
Abstract Marginal-likelihood based model-selection, even though promising, is rarely used in deep learning due to estimation difficulties. Instead, most approaches rely on validation data, which may not be readily available. In this work, we present a scalable marginal-likelihood estimation method to select both hyperparameters and network architectures, based on the training data alone. Some hyperparameters can be estimated online during training, simplifying the procedure. Our marginal-likelihood estimate is based on Laplace's method and Gauss-Newton approximations to the Hessian, and it outperforms cross-validation and manual-tuning on standard regression and image classification datasets, especially in terms of calibration and out-of-distribution detection. Our work shows that marginal likelihoods can improve generalization and be useful when validation data is unavailable (e.g., in nonstationary settings).
Authors Alexander Immer, Matthias Bauer, Vincent Fortuin, Gunnar Rätsch, Mohammad Emtiyaz Khan
Submitted ICML 2021
Abstract The generalized Gauss-Newton (GGN) approximation is often used to make practical Bayesian deep learning approaches scalable by replacing a second order derivative with a product of first order derivatives. In this paper we argue that the GGN approximation should be understood as a local linearization of the underlying Bayesian neural network (BNN), which turns the BNN into a generalized linear model (GLM). Because we use this linearized model for posterior inference, we should also predict using this modified model instead of the original one. We refer to this modified predictive as" GLM predictive" and show that it effectively resolves common underfitting problems of the Laplace approximation. It extends previous results in this vein to general likelihoods and has an equivalent Gaussian process formulation, which enables alternative inference schemes for BNNs in function space. We demonstrate the effectiveness of our approach on several standard classification datasets as well as on out-of-distribution detection.
Authors Alexander Immer, Maciej Korzepa, Matthias Bauer
Submitted AISTATS 2021