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1 Multiclass Multiple Kernel Learning

This section is provides the detailed derivation of the soft margin multiclass multiple
kernel SVM for the specific case of the hinge loss. Refer to [1] for the formulation with
a general loss function.

Corollary 1. When choosing the hinge loss, `(t) := C max (0, 1− t), the optimum w
can be computed as

∀k : wk =
∑

i

∑
u∈Y

αiuΦk(xi, u) ,

where α ∈ Rn×Y is the solution of the quadratically constrained linear program de-
fined by

min
α

γ −
∑

i

αiyi

s.t. ∀i : 0 6 αiyi
6 C

∀i : ∀u 6= yi : αiu 6 0
∀i :

∑
u∈Y

αiu = 0 and ∀u :
∑

i

αiu = 0

∀k : γ >
1
2

∑
i,j,u,v

αiuαjv 〈Φk(xi, u), Φk(xj , v)〉

(1)

.

Proof. We begin at the primal with general loss:

min
β,w,b

1
2

p∑
k=1

βk‖wk‖2 +
n∑

i=1

max
u 6=yi

` (fw,b,β(xi, yi)− fw,b,β(xi, u))

s.t.
p∑

k=1

βk = 1, and ∀k : 0 6 βk .

Using the hinge loss
`(t) := C max (0, 1− t)



we obtain:

min
β,w,b

1
2

p∑
k=1

βk‖wk‖2 +
n∑

i=1

ξi

s.t. ξi = max
u 6=yi

siu, siu > 0

siu > 1− fw,b,β(xi, yi) + fw,b,β(xi, u)
p∑

k=1

βk = 1, and ∀k : 0 6 βk .

Substituting the SVM output function

fw,b,β(x, y) =
p∑

k=1

βk 〈wk, Φk(x, y)〉+ by

and introducing the abbreviated notation

Ψkiu = Φk(xi, yi)− Φk(xi, u)

we get:

min
β,w,b

1
2

p∑
k=1

βk‖wk‖2 +
n∑

i=1

ξi

s.t. ξi = max
u 6=yi

siu, siu > 0
p∑

k=1

βk 〈wk, Ψkiu〉+ byi − bu > 1− siu

p∑
k=1

βk = 1, and ∀k : 0 6 βk

Note that both the first term of the objective and the constraints in the second line are
quadratic and are non-convex. We substitute vk := βkwk, and since a quadratic over a
linear function is convex (i.e. a2

b is convex in both b > 0 and a). The resulting primal
MCMKL optimization problem is convex.

min
β,v,b

1
2

p∑
k=1

1
βk
‖vk‖2 +

n∑
i=1

ξi

s.t. ξi > siu, siu > 0
p∑

k=1

〈vk, Ψkiu〉+ byi
− bu > 1− siu

p∑
k=1

βk = 1, and ∀k : 0 6 βk.

Observe that the constraints are now linear.



The Lagrangian of this is given by

L =
1
2

∑
k

1
βk
‖vk‖2 + C

∑
i

ξi +
∑

i

∑
u 6=yi

ηiu(siu − ξi)

−µiusiu + γ

(∑
k

βk − 1

)
−
∑

k

εkβk

+
∑

i

∑
u 6=yi

α̃iu

(
1− siu −

∑
k

〈vk, Ψkiu〉 − byi
+ bu

)
,

with Lagrange variables α̃ ∈ Rm×Y , 0 6 ε, µ ∈ Rp, and 0 6 η ∈ Rm×Y .
We find the stationary points by setting the partial derivatives with respect to the

primal variables,

∂L
∂βk

= −1
2

1
β2

k

‖vk‖2 + γ − εk, (2)

∂L
∂vk

=
1
βk

vk −
∑

i

∑
u 6=yi

α̃iu (Ψkiu) , (3)

∂L
∂bv

= −
∑

i

δyiv

∑
u 6=yi

α̃iu +
∑

i

∑
u 6=yi

δuvα̃iu (4)

∂L
∂ξi

= C −
∑
u 6=yi

ηiu, (5)

∂L
∂siu

= ηiu − µiu − α̃iu, (6)

to zero. Substituting 6 into the Lagrangian, the linear terms in siu cancel out,

L =
1
2

∑
k

1
βk
‖vk‖2 + C

∑
i

ξi −
∑

i

∑
u 6=yi

ηiuξi

+γ

(∑
k

βk − 1

)
−
∑

k

εkβk

+
∑

i

∑
u 6=yi

α̃iu

(
1−

∑
k

〈vk, Ψkiu〉 − byi
+ bu

)
.

Substituting 5, the linear terms in ξi cancel out,

L =
1
2

∑
k

1
βk
‖vk‖2

+γ

(∑
k

βk − 1

)
−
∑

k

εkβk

+
∑

i

∑
u 6=yi

α̃iu

(
1−

∑
k

〈vk, Ψkiu〉 − byi + bu

)
.



Move all the terms involving vk to the first row, and substituting 3,

L = −1
2

∑
k

βk

∑
i,j

∑
u,v

α̃iuα̃jv 〈Ψkiu, Ψkjv〉

+γ

(∑
k

βk − 1

)
−
∑

k

εkβk

+
∑

i

∑
u 6=yi

α̃iu (1− byi + bu) .

Substituting 3 into 2,

−1
2

∑
i,j

∑
u,v

α̃iuα̃jv 〈Ψkiu, Ψkjv〉+ γ − εk = 0, (7)

and hence we obtain

L = −γ +
∑

i

∑
u 6=yi

α̃iu (1− byi
+ bu) .

Using 4 we obtain the dual Lagrangian,

L =
∑

i

∑
u 6=yi

α̃iu − γ.

From 6, and the fact that µiu > 0, we have ηiu > α̃iu, and substituting this into 5, we
get the constraint ∑

u 6=yi

α̃iu 6 C.

From 7, and the fact that εk > 0, we obtain

1
2

∑
u,v

α̃iuα̃jv 〈Ψkiu, Ψkjv〉 6 γ.



2 Experiments

To be clear about the definitions of the various performance measures used to report
multiclass results, we collect all the definitions in this section. Most measures are de-
fined with respect to a particular class, say A, and can be calculated from the corre-
sponding confusion matrix:

Predicted Label
A ¬A

Actual A True Positive (TP) False Negative (FN)
Label ¬A False Positive (FP) True Negative (TN)

From the confusion matrix above, we can define the various performance measures,
including the Matthews Correlation Coefficient (MCC).

Measure Formula
Accuracy (TP+TN)

(TP+TN+FP+FN)

Precision TP
(TP+FP )

Recall / Sensitivity TP
(TP+FN)

Specificity TN
(TN+TP )

MCC TP TN−FP FN√
(TP+FN)(TP+FP )(TN+FP )(TN+FN)

2.1 Datasets

We used four datasets from two collections:

– From the “TargetP” collection [2] at http://www.cbs.dtu.dk/services/
TargetP/datasets/datasets.php we use both the plant dataset and the
non-plant dataset.

– From the “PSORTb v.2.0 Dataset” [3] at http://www.psort.org/dataset/
datasetv2.html we use all proteins that are assigned to a single localization
for both Gram-postive (PSORT+) and Gram-negative (PSORT-) bacteria.

The numbers of proteins in the utilized datasets are:

location plant nonplant PSORT+ PSORT-
chloroplast 141 — — —
mitochondrion 368 371 — —
secretory pathway 269 712 — —
other (cytopl.+nucl.) 162 1649 — —
cytoplasm — — 194 278
cytoplasmic membrane — — 103 309
periplasm — — — 276
outer membrane — — — 391
cell wall — — 61 —
extracellular — — 183 190
total 940 2732 541 1444

http://www.cbs.dtu.dk/services/TargetP/datasets/datasets.php
http://www.cbs.dtu.dk/services/TargetP/datasets/datasets.php
http://www.psort.org/dataset/datasetv2.html
http://www.psort.org/dataset/datasetv2.html


2.2 Comparison on TargetP datasets

First we report the results of our method on the plant and non-plant dataset of the Tar-
getP data collection. The classes are chloroplast (ch), mitochondria (mi), secretory path-
way (SP), and other (OT); we also report the weighted (by class size) average (avg). All
results are averages over 10 repetitions on randomly permuted data; for some measures
we report standard errors.

Data Class Our Method
Accuracy Precision Recall F1-Score MCC

plant ch 96.7 ± 0.4 95.4 84.4 89.5 ± 1.4 87.8 ± 1.5
mi 95.3 ± 0.4 92.0 97.3 94.6 ± 0.4 90.5 ± 0.8
SP 97.4 ± 0.3 96.0 94.5 95.2 ± 0.7 93.5 ± 0.9
OT 95.6 ± 0.3 87.3 86.7 86.9 ± 1.4 84.3 ± 1.6
avg 96.2 ± 0.4 92.9 92.7 92.7 ± 0.8 89.9 ± 1.1

nonplant mi 96.9 ± 0.2 87.8 90.1 88.9 ± 0.9 87.1 ± 1.0
SP 96.8 ± 0.3 94.4 93.6 94.0 ± 0.6 91.8 ± 0.8
OT 94.9 ± 0.3 95.9 95.7 95.8 ± 0.3 89.3 ± 0.7
avg 95.7 ± 0.3 94.4 94.4 94.4 ± 0.4 89.7 ± 0.8

Now we cite the results of TargetP [2] and TargetLoc [4] as reported in Table
2 of [4]. They are given in terms of sensitivity (SE; equals recall), specificity (SP),
Matthew’s Correlation Coefficient (MCC), and the overall accuracy (Acc). The reported
variability of the accuracy is the standard deviation, which has to be divided by the
square root of the five repretitions to obtain the standard error.

Data Class TargetP TargetLoc
SE SP MCC Acc SE SP MCC Acc

plant ch 85 69 72 88 76 78
mi 82 90 77 87 94 84
SP 91 95 90 93 97 93
OT 85 78 77 92 84 86
avg 85.5 86.2 80.0 85.3 ± 3.5 89.7 90.4 86.0 89.7 ± 1.6

nonplant mi 89 67 73 91 77 81
SP 96 92 92 95 92 91
OT 88 97 82 91 97 86
avg 90.2 91.6 83.4 90.0 ± 0.7 92.0 93.0 86.6 92.5 ± 1.2



times mean βk kernel
selected

10 26.53% RBF on log BLAST E-value, σ = 105

10 19.77% RBF on BLAST E-value, σ = 103

10 16.53% RBF on inv phyl. profs, σ = 300
10 11.12% RBF on lin phyl. profs, σ = 1
10 5.50% motif (•,◦,◦,◦,◦) on [1, 15]
10 4.68% motif (•,◦,◦,◦,•) on [1, 15]
10 3.48% motif (•,◦,◦,◦,◦) on [1, 60]

8 3.17% motif (•,•,◦,◦,•) on [1, 60]
9 2.56% motif (•,◦,◦,◦,◦) on [1, Inf ]
5 1.44% motif (•,◦,•,◦,•) on [1, 60]
7 1.05% motif (•,◦,◦,•,◦) on [1, 15]
7 0.95% motif (•,•,◦,◦,◦) on [1, Inf ]
3 0.65% motif (•,•,•,◦,•) on [1, 60]
5 0.64% motif (•,◦,◦,◦,•) on [1, Inf ]
2 0.40% motif (•,◦,◦,•,•) on [1, 60]
6 0.38% motif (•,◦,•,◦,◦) on [−15, Inf ]
7 0.29% motif (•,◦,◦,◦,◦) on [−15, Inf ]
3 0.26% motif (•,◦,•,◦,•) on [1, 15]
2 0.18% motif (•,◦,◦,•,◦) on [1, 60]
3 0.12% linear kernel on BLAST E-value
2 0.12% motif (•,◦,◦,•,•) on [1, 15]
2 0.08% motif (•,◦,•,◦,•) on [−15, Inf ]
1 0.07% motif (•,•,•,◦,•) on [−15, Inf ]
1 0.03% motif (•,•,◦,◦,◦) on [1, 60]
1 0.02% motif (•,•,◦,◦,•) on [1, 15]

Table 1. Kernels selected in the ten repetitions of experiments on the plant dataset,
sorted by importance as indicated by the averaged coefficient βk. Note that the selec-
tion is very consistent across the repetitions, and that only a small fraction of kernels
obtained a positive weight in any repetition. The first column shows the considered re-
gion of the protein, starting with 1 at the N-terminus; ∞ means that the region extends
to the C-terminus. The second column shows the pattern associated with the kernel.



times mean βk kernel
selected

9 30.69% RBF on log BLAST E-value, σ = 105

9 29.46% RBF on BLAST E-value, σ = 103

10 11.85% RBF on inv phyl. profs, σ = 300
9 7.15% RBF on lin phyl. profs, σ = 1
9 4.48% motif (•,◦,◦,◦,◦) on [1, 15]

10 3.23% motif (•,◦,◦,•,•) on [1, 15]
9 2.32% motif (•,◦,◦,◦,◦) on [1, Inf ]
9 2.17% motif (•,◦,◦,◦,◦) on [1, 60]
8 1.92% motif (•,◦,◦,•,◦) on [1, 60]
9 1.53% linear kernel on BLAST E-value
9 1.48% motif (•,•,•,◦,◦) on [1, Inf ]
8 0.94% motif (•,◦,•,◦,◦) on [1, 15]
4 0.54% motif (•,•,◦,◦,•) on [1, 60]
3 0.38% motif (•,◦,•,•,•) on [1, 60]
3 0.35% motif (•,•,•,◦,•) on [1, 60]
3 0.32% motif (•,◦,◦,•,◦) on [1, 15]
5 0.29% motif (•,◦,◦,◦,•) on [1, 60]
2 0.23% motif (•,◦,◦,◦,•) on [1, 15]
3 0.21% motif (•,◦,◦,•,•) on [1, 60]
5 0.11% motif (•,◦,◦,◦,•) on [−15, Inf ]
1 0.08% motif (•,◦,◦,◦,•) on [1, Inf ]
2 0.08% motif (•,•,◦,◦,•) on [−15, Inf ]
1 0.06% motif (•,•,◦,◦,◦) on [1, Inf ]
2 0.06% motif (•,•,•,•,•) on [1, 60]
1 0.04% motif (•,•,•,•,•) on [1, Inf ]
1 0.04% motif (•,•,◦,◦,◦) on [1, 60]

Table 2. Analoguous to Table 1, but for nonplant data.



2.3 Comparison on PSORTdb datasets

We report the results of our method on singly located bacterial proteins from PSORTdb.
The classes are cytoplasm (C), cytoplasmic membrane (CM), periplasm (P), outer mem-
brane (OM), cell wall (CW), and extracellular (EC); we also report the weighted (by
class size) average (avg).

We compare to the results of PSORTb v2.0 provided in Table 4 in [3], which were
obtained on the same sets of singly located proteins. As described in the paper, to make
the results comparable we exclude the same numbers of most uncertain predictions from
the evaluation as PSORTb v2.0 predicts “Unknown”; this is 81 out of 541 proteins for
PSORT+ and 192 out of 1444 proteins for PSORT-.

Data Class Our Method PSORTb v2.0
Accuracy Precision Recall F1-Score MCC Precision Recall F1-Score

PSORT+ C 97.7 ± 0.7 95.4 99.1 97.1 ± 0.8 95.3 ± 1.3 97.1 86.6 91.6
CM 98.1 ± 0.5 98.9 90.8 94.3 ± 1.8 93.5 ± 1.8 96.9 91.3 94.0
CW 97.9 ± 0.4 93.6 86.9 89.7 ± 1.7 88.8 ± 1.8 94.7 88.5 91.5
EC 96.2 ± 0.5 94.2 94.9 94.4 ± 0.7 91.6 ± 1.0 93.9 67.8 78.7
avg 97.3 ± 0.6 95.5 94.7 94.9 ± 1.0 93.0 ± 1.4 95.9 81.3 88.0

PSORT- C 97.9 ± 0.3 90.6 99.6 94.8 ± 0.7 93.7 ± 0.8 92.9 70.1 79.9
CM 98.9 ± 0.3 100.0 94.9 97.3 ± 0.6 96.7 ± 0.7 95.3 92.6 93.9
P 98.0 ± 0.2 94.1 94.8 94.4 ± 0.6 93.2 ± 0.7 95.5 69.2 80.3
OM 99.3 ± 0.1 99.9 97.7 98.8 ± 0.3 98.3 ± 0.3 97.4 94.9 96.1
EC 98.4 ± 0.2 95.3 92.8 94.0 ± 0.8 93.1 ± 0.9 97.4 78.9 87.2
avg 98.6 ± 0.2 96.4 96.3 96.2 ± 0.6 95.4 ± 0.7 95.8 82.6 88.7

We also evaluate our method on all proteins of the sets of singly located bacterial
proteins, i.e. without excluding the most uncertain predions. This enables a fair compar-
ison to the results reported for CELLO II on Gram negative bacterial proteins in [5] in
Table III. Note that their performance measure, although called accuracy in [5], agrees
to our definition of recall; hence it is reported by the latter name in the following table.

Data Class Our Method CELLO II
Accuracy Precision Recall F1-Score MCC Recall

PSORT+ C 94.9 ± 0.9 90.6 96.7 93.5 ± 1.1 89.4 ± 1.9 –
CM 95.7 ± 0.7 94.7 83.6 88.6 ± 2.1 86.3 ± 2.3 –
CW 97.1 ± 0.4 89.9 84.5 86.3 ± 1.9 85.2 ± 2.0 –
EC 93.7 ± 0.8 90.9 91.3 91.1 ± 1.1 86.3 ± 1.7 –
avg 94.9 ± 0.8 91.4 91.0 90.9 ± 1.4 87.3 ± 1.9 –

PSORT- C 95.5 ± 0.4 83.9 96.8 89.9 ± 1.0 87.4 ± 1.2 95.3
CM 97.1 ± 0.2 97.3 89.1 92.9 ± 0.6 91.3 ± 0.8 90.0
P 94.5 ± 0.4 84.1 89.2 86.5 ± 1.0 83.2 ± 1.2 87.7
OM 97.7 ± 0.3 98.2 93.7 95.8 ± 0.6 94.4 ± 0.8 92.8
EC 96.7 ± 0.3 92.5 85.2 88.6 ± 1.1 86.8 ± 1.3 79.5
avg 96.4 ± 0.3 91.8 91.3 91.3 ± 0.8 89.2 ± 1.0 90.0



times mean βk kernel
selected

10 41.77% RBF on BLAST E-value, σ = 103

10 27.32% RBF on lin phyl. profs, σ = 1
10 6.23% motif (•,◦,◦,◦,◦) on [1, Inf ]
10 4.01% RBF on inv phyl. profs, σ = 300
10 3.75% motif (•,◦,•,◦,•) on [1, Inf ]

8 3.03% RBF on log BLAST E-value, σ = 105

9 2.24% motif (•,◦,•,•,•) on [1, 60]
7 2.21% motif (•,◦,◦,•,•) on [−15, Inf ]
9 1.81% linear kernel on BLAST E-value
5 1.64% motif (•,◦,•,•,•) on [−15, Inf ]

10 1.32% motif (•,◦,◦,◦,•) on [1, 15]
6 1.25% motif (•,◦,•,◦,◦) on [1, Inf ]
4 0.92% motif (•,•,◦,◦,◦) on [1, Inf ]
8 0.53% motif (•,◦,◦,◦,◦) on [1, 15]
4 0.43% motif (•,◦,◦,◦,◦) on [1, 60]
6 0.43% motif (•,◦,◦,◦,◦) on [−15, Inf ]
2 0.32% motif (•,◦,◦,•,◦) on [1, 60]
4 0.25% motif (•,◦,◦,◦,•) on [1, Inf ]
2 0.17% motif (•,◦,◦,◦,•) on [−15, Inf ]
2 0.16% motif (•,◦,◦,◦,•) on [1, 60]
1 0.11% motif (•,◦,•,◦,◦) on [1, 15]
1 0.07% motif (•,◦,•,◦,•) on [−15, Inf ]
1 0.05% motif (•,•,◦,◦,◦) on [1, 15]

Table 3. Analoguous to Table 1, but for gram-positive bacteria for PSORTb.



times mean βk kernel
selected

10 35.00% RBF on BLAST E-value, σ = 103

10 26.87% RBF on log BLAST E-value, σ = 105

10 16.17% RBF on lin phyl. profs, σ = 1
10 5.04% motif (•,◦,◦,◦,◦) on [1, Inf ]
10 2.82% RBF on inv phyl. profs, σ = 300
10 2.64% linear kernel on BLAST E-value
10 1.97% motif (•,◦,◦,•,◦) on [1, Inf ]

9 1.57% motif (•,•,◦,◦,◦) on [1, Inf ]
10 1.51% motif (•,◦,◦,◦,◦) on [1, 60]
10 1.14% motif (•,◦,◦,◦,◦) on [1, 15]

7 0.86% motif (•,◦,•,◦,◦) on [1, Inf ]
10 0.82% motif (•,◦,◦,◦,•) on [−15, Inf ]

5 0.65% motif (•,◦,•,•,•) on [1, 60]
5 0.60% motif (•,◦,◦,◦,•) on [1, Inf ]
4 0.54% motif (•,•,◦,•,•) on [1, 60]
2 0.36% motif (•,•,•,•,•) on [1, 60]
6 0.35% motif (•,◦,•,•,•) on [1, 15]
6 0.25% motif (•,◦,◦,•,◦) on [−15, Inf ]
3 0.21% motif (•,◦,•,◦,•) on [1, 15]
3 0.18% motif (•,◦,◦,•,•) on [1, 15]
2 0.13% motif (•,◦,◦,◦,•) on [1, 15]
5 0.11% motif (•,◦,◦,◦,◦) on [−15, Inf ]
2 0.10% motif (•,◦,◦,•,◦) on [1, 15]
1 0.09% motif (•,◦,◦,•,•) on [1, 60]
1 0.03% motif (•,•,◦,◦,◦) on [−15, Inf ]
1 0.01% motif (•,•,•,◦,•) on [1, Inf ]

Table 4. Analoguous to Table 1, but for gram-negative bacteria for PSORTb.
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