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Abstract

While classical kernel-based learning algorithms are based on a single
kernel, in practice it is often desirable to use multiple kernels. Lankriet
et al. (2004) considered conic combinations of kernel matrices for classi-
fication, leading to a convex quadratically constraint quadratic program.
We show that it can be rewritten as a semi-infinite linear program that
can be efficiently solved by recycling the standard SVM implementa-
tions. Moreover, we generalize the formulation and our method to a
larger class of problems, including regression and one-class classifica-
tion. Experimental results show that the proposed algorithm helps for
automatic model selection, improving the interpretability of the learn-
ing result and works for hundred thousands of examples or hundreds of
kernels to be combined.

This file contains the appendix of our submission to NIPS
2005, which had to be removed due to space constraints.

A Derivation of the MKL Dual for Generic Loss Functions

Conic Primal From the MKL primal problem (P), one can derive the following equiv-
alent second order cone problem, where KD = {(x, c) ∈ RD × R, ‖x‖2 ≤ c} is the
second-order cone of order D.



min
w,u,t

1
2
u2 +

N∑
i=1

L(f(xi), yi)

(Pcone) w.r.t. : u ∈ R, t ∈ R, (wk, t) ∈ Kkk
, ∀k = 1 . . .K

s.t. : f(xi) =
K∑

k=1

Φk(xi)wk + b, ∀i = 1 . . . N

K∑
k=1

tk ≤ u

Introducing Lagrange multipliers γ ∈ R+, α ∈ RK and (λk, µk) ∈ (K‖)∗ = Kd living on
the self dual cone K, the conic Lagrangian is given as

L(α, γ,λ,µ) =
1
2
u2 +

N∑
i=1

L(f(xi), yi)−
N∑

i=1

αif(xi) +
N∑

i=1

αi

K∑
k=1

Φk(xi)wk +

+γ

(
K∑

k=1

tk − u

)
−

K∑
k=1

(
Φk(λ)Twk + µktk

)
.

The derivatives of the Lagrangian w.r.t. the primal variables, u,w, t have to vanish. We
therefore get the following constraints

∂uL = u− γ ⇒ γ = u

∂wk
L =

N∑
i=1

αiΦk(xi)− Φk(λ) ⇒
N∑

i=1

αiΦk(xi) = Φk(λ)

∂tk
L = γ1− µk ⇒ γ = µk

∂f(xi)L = L′(f(xi), yi)− αi ⇒ f(xi) = L′−1(αi, yi).

There L′ is the derivative of the loss function and L′−1 is the inverse of the L′ for which
L is required to be strictly convex and differentiable. We thus obtain the following dual
function

D(α, γ, λ, µ) = −1
2
γ2 +

N∑
i=1

L(L′−1(αi, yi), yi)−
N∑

i=1

αiL
′−1(αi, yi) +

+
N∑

i=1

αi

K∑
k=1

Φk(xi)Twk −
N∑

i=1

αi

K∑
k=1

Φk(xi)Twk

= −1
2
γ2 +

N∑
i=1

L(L′−1(αi, yi), yi)−
N∑

i=1

αiL
′−1(αi, yi)

subject to the constraints γ ≥ 0 and
∥∥∥∑N

i=1 αiΦk(xi)
∥∥∥

2
≤ γ, ∀k = 1 . . .K.

This leads to:



max
γ,α

−1
2
γ2 +

N∑
i=1

L(L′−1(αi, yi), yi)−
N∑

i=1

αiL
′−1(αi, yi)

w.r.t. : γ ∈ R, α ∈ RN

s.t. : γ ≥ 0∥∥∥∥∥
N∑

i=1

αiΦk(xi)

∥∥∥∥∥
2

≤ γ, ∀k = 1 . . .K

Applying (.)2 to the latter constraint, multiplying by 1
2 , relabeling 1

2γ2 7→ γ we obtain the
MKL dual for arbitrary strictly convex loss functions (γ ≥ 0 is fulfilled implicitly).

min
γ,α

γ −
N∑

i=1

L(L′−1(αi, yi), yi) +
N∑

i=1

αiL
′−1(αi, yi)

(Dcone) w.r.t. : γ ∈ R, α ∈ RN

s.t. :
1
2

∥∥∥∥∥
N∑

i=1

αiΦk(xi)

∥∥∥∥∥
2

2

≤ γ, ∀k = 1 . . .K.


