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Zusammenfassung Bis heute stellt das Modellieren von Splice-Stellen in der
Bioinformatik eine Herausforderung dar, da die Prozesse des Splicens noch
nicht hinreichend geklart sind. In der vorliegenden Arbeit wurden erfolgrei-
che diskriminierende Lernmethoden wie Support Vektor Maschinen (SVM)
und beschreibende Lernmethoden wie Hidden Markov Modelle (HMM) kom-
biniert, um echte Splice-Stellen von falschen zu unterscheiden.

Diese bekannten Lernmethoden wurden mit neuen Kern-Funktionen wie dem
TOP- und Fisher-Kern (FK), welche von generativen Modellen abgeleitet
werden, kombiniert. Die Ergebnisse wurden mit denen des Locality Improved
Kernel verglichen. Dabei lief sich ein interessanter Zusammenhang mit dem
Fisher-Kern herausfinden. Desweiteren erfolgte eine experimentelle Analyse
von Splice-Stellen und verschiedene Lernmaschinen wurden hinsichtlich ihrer
Klassifikationsqualitdt auf Splice-Stellen untersucht.

Abstract Modelling splice sites is considered a difficult task, and as of this
writing, the procedure of splicing is still not well understood. We combine
successful discriminative learners like Support Vector Machines (SVM) and
descriptive learners like Hidden Markov Models (HMMs) to separate true
splice sites from decoys.

Recently developed kernel functions like the TOP- and Fisher Kernel (FK)
that are derived from generative models are used to combine SVMs and
HMMs. Furthermore, results for the well known Locality Improved Kernel
are presented and its connection to the FK, derived from a special HMM is
shown. Finally we provide an experimental analysis of splice sites and inve-
stigate the classification performance using a variety of learning machines.



VI




Contents

1 Introduction

1.1 Overview . . . . v v e e e e
1.2 Genetics . . . . . . . . . e

2 Machine Learning

2.1 Imtroduction . . . . . . . . . ..
2.2 Hidden Markov Models . . . . . . . . . . .. L
2.2.1 Model Probability, Forward and Backward Variables . . . . ... ... ..
2.2.2 The Most Probable Path . . . . ... ... ... ... .. .........
2.23 Traininga HMM . . .. .. ... ... . .
2.2.4 Higher Order HMM . . . . . . . . ... . .
2.3 Support Vector Machines . . . . . . .. ... L
2.3.1 The Separable Case . . . . . .. . . ..
2.3.2 The Non-Separable Case . . . . . .. ... ... ... ... .. ......
2.3.3 Kernel Functions . . . . . .. ... L L
2.4 TImproved Kernels for Splice Site Recognition . . . . . ... ... .. ... .. ..
2.4.1 The Locality Improved Kernel . . . .. ... ... ... .. ........
2.4.2 The Fisher Kernel . . . . . . .. ... ... . . ...
2.4.3 The TOP Kernel . . . . . . . .. . it e et
2.4.4 Connection to the Locality Improved Kernel . . . . . . ... ... ... ..
3 Data
3.1 Caenorhabditis Elegans . . . . . . . . . .. ...
3.1.1 Introduction . . . . . . . . . . . . e
3.1.2 Datasets . . . . . .o e e e e
3.1.3 Preliminary Analysis . . . . . . . . ...
3.2 Human Genome . . . . . . . . ... L
3.21 TIP-Data . . . . . . o i e e
3.2.2 Preprocessing the Human Genome . . . . .. ... .. ... ........

4 Experiments

4.1 Benchmarking the Methods on the IP-Dataset . . . . . . .
42 C.Elegans. . . . . .. .. e
421 Linear HMMs . . .. ... ... ... ... .....
4.2.2 Fully Connected HMMs . . . . . ... ... ....
4.2.3 Specially Designed HMMs . . . . . ... ... ...
4.2.4 Locality Improved Kernel . . . . .. ... .....
4.2.5 Fisher Kernel and TOP Kernel . . . .. ... ...
4.2.6 Comparison and Discussion . .. .. .. ... ...
43 Human. . ... ... .. ... e
4.3.1 Preliminary Results on the Human Genome . . . .

5 Conclusion and Outlook
Appendix

A Proofs

A.1 The Gradient of the Model Probability . . . . . ... ...

A.2 Connection between Locality Improved and Fisher Kernel
B Notations
C Genefinder

References



VIII




1 INTRODUCTION 1

1 Introduction

1.1 Overview

It was all over the press: The roundworm’s DNA C.elegans is one of the first that has
been fully sequenced! Human DNA has been sequenced! And more and more species’s
DNA is made publicly available. One has to ask ”What can be done and what is actually
done with that treasure.”In principle the understanding of the “DNA construction kit”
will in the near future allow people to cure genetic diseases, like cancer or trisomy 21
(Down Syndrome). However, still much work needs to be done to achieve this goal. At
the moment, human DNA is not even fully sequenced. Still a number of gaps need to
be filled. Researchers still do not know how many genes can be found in human DNA.
The active structure of a large number of proteins, which are promotors of all kinds
of chemical reactions in our body, are still unknown. Biologists seek to understand
the underlying processes. This can be done via expensive biological experiments, or
by analysing the huge available set of data. The latter forms the relatively new field
of bioinformatics. In our work, we set for ourselves the task of modelling the process
of splicing in eukaryotes like the roundworm C.elegans and later in the human by
using recently developed machine learning techniques that are adapted to best suit this
problem.

Data The graphics on the left provide an
overview of this approach: The most

important role plays the data. All
machine learning techniques would
Introd@ not work without it, and even if
enough data was available, they
would still highly depend on care-
fully prepared data sets. We will de-

- - scribe the data sets we use in detail
|Mach1ne Learn1ng| in Section 3.

The Introduction itself is divided
into a biological part (cf. Section 1.2)

Support Hidden a.nd a machine lfzarning I?art (ct. Sec—
Vector Markov tion 2). We give a brief overview
Machines Models on genetics with the major focus on
the splicing process. Thus readers

\ / already familiar with the biological

details may want to skip this sec-

|Prior Knowledge| tion. In the machine learning in-

troduction, we first focus on well es-

tablished methods in bioinformatics

like Hidden Markov Models (cf. Sec-

Application tion 2.2), and second discuss Sup-

port Vector Machines (cf. Section

2.3) which were introduced in 1995

- and are known to produce excellent

Conclusion . .

results on a variety of learning tasks.

We explain that both techniques use a very different approach in solving the standard
machine learning problem of classification.

Since the framework of each of these machine learning techniques does not guarantee




good results per se, we explain in Section 2.4 how we ultimately incorporated prior
knowledge about the splicing problem into Support Vector Machines by using special
kernels. We compare the established Locality Improved Kernel [55] with the recently
developed Fisher [22] and TOP Kernel [49]. The latter ones are derived from Hidden
Markov Models, i.e., prior knowledge incorporated into Hidden Markov Models and found
by hmm learning is included into these kernels.

We show that the framework of the Fisher and TOP Kernel is even more powerful than
that of the Locality Improved Kernel.

Equipped with these methods, we first evaluate the performance of our methods (cf.
Section 4) on a benchmark data set, where we can go beyond state of the art results.
We then fine-tune Hidden Markov Models on real world splice site data samples of the
roundworm (. elegans, again obtaining excellent results. In the end, we show preliminary
results of some of our methods applied to human DNA.
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1.2 Genetics

A brief history Almost 150 years ago, Mendel defined the basic nature of genes, starting
a new branch in biology, Genetics. Back in 1944, Avery showed chemically (cf. Table
1.1) that deozyribonucleic acid (DNA) is the genetic material [30]. Not much time
passed between the discovery that genomes can be sequenced and the completion of
sequencing the genome of the nematode Caenorhabditis elegans at the end of 1998, and
the first draft sequence' of the human genome in June 2000.

1865 Genes are particulate factors

1903 Chromosomes are hereditary units

1910 Genes lie on chromosomes

1913 Chromosomes contain linear arrays of genes

1927 Mutations are physical changes in genes

1931 Recombination is caused by crossing over

1944 DNA is genetic material

1945 A gene codes for a protein

1953 DNA is double helix

1958 DNA replicates semiconservatively

1961 Genetic code is triplet

1977 DNA can be sequenced

1997 Genomes can be sequenced

1998 Completion of the genome of the Caenorhabditis Elegans
2000 ‘Working Draft’ of the human genome announced

Table 1.1: A brief history of genetics. This table is taken from [30] except for the last two entries.

Fundamentals For those unfamiliar with genetics, a short overview will be given in
the following. We are exclusively dealing with the class of eukaryotes, i.e., organisms in
whose cells nuclei and a cytoskeleton are present. All ‘higher’ organisms are eukaryotic,
e.g., humans as well as C. elegans belong to this class while, e.g., bacteria belong
to the class of prokaryotes. The word ‘eukaryote’ means ‘true nuclei’, i.e., the nuclei
contain genetic information which is organised into discrete chromosomes and contained
within a membrane-bounded compartment. In principle?, the whole set of chromosomes,
containing all of the organism’s genes and regulatory elements, is referred to as ‘the
genome.’ For example, the human genome consists of 22 chromosome pairs, with pair
22 (according to standard enumeration) determining the sex, i.e., females have two X
chromosomes, while males have one X and one Y chromosome.

Each chromosome is a pair of double-stranded sequences of DNA. A single-stranded
DNA sequence consists of alternating series of pentose (sugar) and phosphate residues,
and bases attached to it. Either one of the bases Adenine, Thymine, Guanine or Cy-
tosine is linked to a sugar at position 1 (cf. Fig. 1.1). They are usually referred to by
their initial letters. The name DNA is derived from the sugar-component in DNA (2-
deoxyribose), which is the backbone of DNA. Metaphorically spoken, a double stranded
DNA sequence looks like a twisted rope ladder. It forms a double helix, where one
strand is the complement of the other, i.e., only the base pairs Adenine-Thymine and

'One can see the current status at http://www.ncbi.nlm.nih.gov/genome/seq/.
2To be correct, the DNA contained in chloroplasts, mitochondria and plasmids, does also belong to
the genome.
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Figure 1.1: Explanation of the four bases adenine, cytosine, guanine, thymine and their pairing using
hydrogen bonds. A sequence of only the two base pairs T-A (top) and C-G (bottom) is shown. On the
left and right side one can see the sugar molecules, which are the backbone of DNA. The strands are
antiparallel, i.e., one strand runs in 3’ — 5’ direction, while the other runs 3’ — 5'.

Guanine-Cytosine may form the “steps” of the ladder. The helix is constructed by link-
ing the 5’ position of one pentose ring to the 3’ position of the next pentose ring via a
phosphate group. As a result, one end of the chain has a free 3’ group, while the other
has a free 5" group. As a convention, the bases are written in 5’ to 3’ direction. Due
to the complementary base pairing, the strands are anti-parallel, i.e., one strand is in
5" — 3' and the other in 3' — 5’ direction, cf. Fig. 1.1.

Each chromosome consists of genetic and non-genetic regions, while the latter makes
up most of the chromosome?. But where on the chromosome are the genes located and
what is a gene?

A gene can be defined* as a region of DNA that controls a certain hereditary charac-
teristic. It corresponds to a sequence used in the production of a specific protein.
While the question about the location of genes has not been sufficiently answered yet,
it is known that a number of stages are involved in the expression of genes (i.e., the
process of synthesising proteins from genes) [30] have been identified. These steps are
carried out sequentially:

1. Activation of gene structure

2. Initiation of transcription

3. Processing of the transcript

4. Postprocessing

5. Transport of mRNA to cytoplasm

6. Translation of mRNA

3The function of the non-genetic regions is mostly unknown at the time of writing.
“The definition of the term “gene” is still discussed, cf., http://www.genomicglossaries.com/
content/gene_def .asp
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It was discovered that genes are in an “activated” in a tissue-specific fashion. A gene
may be active in cells composing one kind of tissue, but “inactive” in other kinds of tis-
sue. When the precondition - the gene is active - is fulfilled, it can be transcribed, that
is, the synthesis of a copy of the gene, which is encoded on only one of the two strands
of the double-stranded DNA (the coding strand). The copy is not DNA, but single-
stranded precursor messenger ribonucleic acid (preemRNA). The chemistry of RNA
requires that the role of Thymine is taken over by the base Uracil (U). For convenience,
we will use Uracil and Thymine synonymously. Transcription starts when the enzyme

l_ exon —|— intron —| exon |— intron —I exon I— intron —I exon I— intron —I— exon :

DNA - IS T I o
ATG GT AG GT AG GT AG GT AG TTG,TAA
TGA
transcription
UUG,UAA
AUG GU AG GU AG GU AG GU AG UGa
pre-mRNA o ] T I I I ot
splicing
mRNA o N
AUG UUG,UAA
translation ver
protein N I ©

Figure 1.2: The major steps in protein synthesis. See text for details. Idea is taken from [13, 30]

‘RNA polymerase’ binds to the promotor, which is a special region located upstream® of
the first base pair that is transcribed into pre-mRNA. From this startpoint, RNA poly-
merase moves downstream in 5 — 3’ direction, continuously synthesizing pre-mRNA
until a terminator sequence is reached. In the ‘postprocessing’ step, the pre-mRNA is
transformed into mRNA. One necessary step in the process of obtaining mature mRNA
is called Splicing. The coding sequence of an eykaryotic gene is “interrupted” by non-
coding regions called introns. A gene starts with an exon and is then interrupted by an
intron, followed by another exon, intron etc. until it ends in an exon. In the splicing
process, introns are removed through a lariat cf. Fig. 1.3. As a result, there are two

Y5y,
@O0,
Q,Q 0

25 Guyaac

S
a
=
=
%
A
(&7
UUGAAC 4GG'UACUAACCGGUGAAGAGAGGUUAAGCUCGUCGCUGCU

Figure 1.3: Illustration of the splicing process. First a cut is made at the 5’ site right before the GT.
Then splicing proceeds through a lariat, in which the 5’ terminus generated at the end of the intron
becomes linked by a 5’-2’ bond to a base within the intron. The target base is an A in a sequence that is
called the branch site [30]. In the second stage, a cut is made at the 3’ site. The free intron is released
and both exons are joined at their ends.

SUpstream means closer to the 5’ end, while downstream means closer to the 3’ end.
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different splice sites. The exon-intron boundary, referred to as the donor site or 5’ site
and the intron-exon boundary, the acceptor or 3’ site since it lies downstream of the
acceptor site. Splice sites have strong consensus sequences, i.e., almost each position in
a small window around the splice site is representative of the most frequently occurring
nucleotide when many existing sequences are compared in an alignment. For example,
the 5’ site’s consensus is

AgaG73G100T100A62 A6 Ga T3, while the 3’ site’s consensus is CgsA100G100,

where the subscripts denote the frequency of the symbol in percent [30]. Unfortunately
the pairs GT...AG do occur very frequently, e.g., in human DNA (which is ~ 3 - 10°
base pairs in size) GT occurs about 1 billion times. For some crude estimate of say 10°
genes with 10 exons each, only 0.1% of the possible splice sites are real splice sites.
One can analogously estimate the number of occurences of AG which leads to a similiar
result. Therefore it is not enough to look at pairs of GT. . .AG, evidently there is some
intrinsic property around the splice site telling the spliceosome, i.e., the large biological
splicing apparatus consisting of an array of proteins and ribonucleoproteins, to start
the splicing mechanism. Neither is it known what this property is, nor what the details
of the reaction involving RNA and the spliceosome are. While the canonical splice
sites GT...AG make up the vast majority of splice sites, other possible combinations,
like, e.g., GT. . .TG were discovered [10]. We will not take these non-canonical sites into
account, which would make splice site detection even more difficult.

What is known about splicing?
e The splicing process takes place in the nucleus.
e An average mammalian gene has 7 — 8 exons spread over =~ 16kb.

e Exons are relatively short, 100 — 200 base pairs (bp) while introns are longer than
1kb.

e There are no reading frames in introns.

e Splice sites are generic: they do not have a specificity for individual RNA pre-
cursors, and individual precursors do not convey specific information (such as
secondary structure) that is needed for splicing.

e The apparatus for splicing is not tissue specificc RNA can usually be spliced
properly by any cell, whether or not it is usually synthesised in that cell.

e Experiments show that any 5’ splice site can in principle be connected to any 3’
splice site, i.e., only local information is relevant in the splicing process.

e In higher eukaryotes, 18 — 40 bp upstream of the 3’ site, lies the branch site. To
this site the GU from the 5’ site connects to an A of the branch site.

Thus, the sequences needed for splicing are the short consensus sequences at the 5’
and 3’ splice sites and at the branch site. In higher eukaryotes mutations or deletions
of the branch site result in a prorimate 3’ site to be taken. The branch site therefore
identifies the 3’ site to be used as the target for connection to the 5’ site [30], but its
removal does not prevent splicing.
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After pre-mRNA has been spliced to form mRNA, the splicing product is transported
from the nucleus to the cytoplasm. There, in the step of translation, mRNA is read as
codons, i.e., as triplets of nucleotides. Hence, there are three different reading frames,
i.e., ways of reading triplets of RNA (one for each of the possible start positions 0,1 or
2). 61 of the 4 = 64 possible codons code for 20 amino acids, while the remaining 3
(UAG,UAA,UGA) are termination codons, which mark the end of a gene. The translation
begins almost always at the start codon AUG, called translation initiation site (TIS).
However, only the minority of the codon AUG, which represents the amino acid methion-
ine, really signals the translation initiation. SVMs have been successfully used to model
this site [55]. When a stop codon is reached, translation is terminated and the set of
amino acids, the result of the translation process, form a long polypeptide, the protein.

Data To gain some understanding about what the data looks like, we give some ex-
amples:

A fully sequenced genome consists of all the chromosomes found in a cell of the respective
organism. Each sequenced chromosome is a sequence of the characters A,C,G,T, like
that in Fig. 1.4.

C1y
0\ \\II// c@ Cacy GGTTAAGCTCGTCGCTGeT
TTACT, // SGRE VL LLLLTTT )y
/7 /T:/r(iz‘qAc<;'1“i°\‘§2§“c’0k CAT él”é/ //"}(/;G?ﬂCCAG G(\;T%l\s‘%%\é,%c\‘,CkATTCGAGCAGCG ””’
[T \ g & GAG IT1T1) ¢t
" 44cTaepne” CAGGTCGCCP&CTT

Figure 1.4: The two strands of DNA in an ASCII-character chain. As a result of a sequencing project,
only one of these sequences is given, since Adenine is always connected to Thymine, and Guanine to
Cytosine.

When dealing with splice sites, the samples are aligned such that AG appears at the same
position in all samples, while each sample consists of a fixed number of bases around
the site.

AAACAAATAAGTAACTAATCTTTTAGGAAGAACGTTTCAACCATTTTGAG
AAGATTAAAAAAAAACAAATTTTTAGCATTACAGATATAATAATCTAATT
CACTCCCCAAATCAACGATATTTTAGTTCACTAACACATCCGTCTGTGCC
TTAATTTCACTTCCACATACTTCCAGATCATCAATCTCCAAAACCAACAC
TTGTTTTAATATTCAATTTTTTACAGTAAGTTGCCAATTCAATGTTCCAC
CTGTATTCAATCAATATAATTTTCAGAAACCACACATCACAATCATTGAA
TACCTAATTATGAAATTAAAATTCAGTGTGCTGATGGAAACGGAGAAGTC

Figure 1.5: An example that illustrates how splice site samples are constructed. Windows of fixed width
are taken around the splice site, while AG is aligned to be at the same position in all samples. The left
part including the AG is intronic, while the rest is exonic.

Why splice site detection is important A complete understanding of splice sites does
not only help to correctly predict mRNA and thus proteins from DNA, but can also be
of great help in localising genes. Actually several other sites, like start and stop codons,
branch points, promotors and terminators of transcription and various transcription
factor binding sites belonging to the class of local sites can help to detect genes [20].
In computational genefinding, these signals are often contrasted with variable length
regions, like exons and introns. While the latter are recognised by methods called content
sensors, the former can be recognised by, e.g., weight matrices, decision trees, etc.,
methods named signal sensors [20]. Three 5th-order markov chains are very common
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content sensors for modelling eukaroytic introns and exons. Since signal and content
sensors alone perform poorly, integrated models, such as Generalised Hidden Markov
Models (GHMMSs) [28] are used to combine both methods. Integrated models may
capture “higher correlations” between different signals and can incorporate constraints
and structure. For example prior knowledge, like ‘an intron is always followed by an
exon’; ‘the distance of the promotor to the translation start is at least a certain number
of bases away’, etc. can be incorporated into such models.

In the following, we focus on improving the signal sensor for the detection of splice sites.
Since this detection uses only local information, this work is only useful when embedded
in a genefinder that leaves the task of splice site detection to our proposed method.
While our splicing models were trained on the true sites, we chose to train “negative”
models on decoys which were extracted from a small window around the true site (cf.
Section 3). Hence, we have to make the assumption that sites the genefinder presents
to our splice site detector, are either true splice sites or spots close to the true site. The
performance guarantees as shown in Section 4 will only hold when one complies with
this assumption.
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2 Machine Learning

2.1 Introduction

In Machine Learning, the task of classification is to find a rule, which based on external
observations, assigns an object to one of several classes [34]. In the simplest case of
only two classes, one possible formalisation of this problem is to estimate a function
(a classifier) f : RP — {—1,41} that assigns a label § € {—1,+1} to each sample
x € IRP. To estimate this function, a number of labeled training samples

(x1,91),-- > (XN, YN)

are given, where the assumption is made that the pairs of training data are generated
i.i.d.® according to an unknown probability distribution Pr[x,y]. One hopes that the
classifier f performs well on unseen samples, i.e., that the estimated label f(x) = 7 is
equal to the true label y for an unseen sample x, which is assumed to be generated from
the same distribution Pr[x,y].

Thus the goal is to find the ‘best’ function f, i.e., the function that minimises the
expected error (risk)

R[f) = / (£ (x), 9)dPr[x, ).

Here [ denotes a loss function. Its arguments are the predicted value § = f(x) and the
true label y. In classification the 0 — 1 loss is usually used, which can be defined as

(F60),9) = {0’ Fe =,
1, else

When looking at the risk functional, one recognises that the risk depends on the unknown
probability distribution Pr[x,y]. All one can do is to estimate the function f based on
the available information, i.e., from a finite number of training samples. There are
several methods of estimation to accomplish this. They are called inductive principles
[12]. For example, one simple principle is to approximate the risk functional by the
empirical risk

N
Remp = %;Z(ﬂxi),y».
Given a class of functions f € F' described by a set of parameters, one could now choose
the best f by using the one that minimises the empirical risk. Doing so we get an esti-
mate of the decision boundary. This type of learning the decision function f is called
discriminative learning, since we were given positive and negative samples and used
these to reason on some function f that seperates these two classes. However in the
case that the set of functions F' can capture arbitrary decision boundaries, one could
suffer from owverfitting. On the other hand F' might contain functions that are too sim-
ple, which are not capable of describing the problem. This dilemma is explained best by
an example. Consider” the task is to classify trees and non-trees. When a botanist with
photographic memory has learned a number of trees, he will not realise that a newly
presented tree is a tree, just because the number of leaves is different. On the other
hand the botanist’s lazy brother declares that if it is green it is a tree. It is therefore

Sindependent and identically distributed
"This example is taken from [7]
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crucial to choose F' appropriately.

Instead of learning a discriminative decision function, one could estimate the class condi-
tional probability distribution Pr[x|y = +1,604] and Pr[x|y = —1,0_] using generative
models @4 and 6_ and the class prior Prly = +1|6] directly. This approach is called
generative or descriptive learning. We define 6 := (6,,0_,a). Then when using the
maximum likelihood (ML) inductive principle one has to choose an estimate for the
parameters 8 € ©' of the generative models Pr[x|0+,y = +1] and Pr[x|0 vy = —1]
such that the likelihood functions [12]

Ny
Pr[x;,,. .. ,xiN+|0+,yi1 =+1,.. Yy, = +1] = H Pr(x;, |04,y = +1] and
k=1
N_
Pr(xj,..., x5y [0_,y;, = —1,...,y;y, =—1]= H Pr[x;, |0_,y;, = —1],
k=1
are maximised independently. Here y;,, ... Yin, = +1 and y;,...,y;y = —1, and )

denotes the estimate of the model parameters. The class prior can be estimated to be

a =Prly =+1|0] = &

Hence ML returns an estimate 8 for the true model parameters 6*, which maximises
the above likelihood functions for the given training dataset.

Under the assumption that the true distribution can be parametrised and the number of
examples is large enough, the estimated probability distributions can lead to the Bayes
optimal decision rule

f(x) = sign(Prly = +1|6*] Prx|[y = +1,60"] — Pr[y = —1|0"] Pr[x|y = -1, 6")).

Furthermore one can create new examples by sampling from the class conditional
distribution, and use this density function to define a metric or derive a kernel function
to be used in discriminative classifiers, which creates an even more powerful decision
function [22, 49].

Unfortunately in the general case
it is considered to be a challenging
problem to estimate the density
function of the two classes. When
the true distribution is not contained
in the set of possible distributions,
the estimate can be very poor. Fur-
ther on descriptive methods need
to estimate the whole distribution,
regardless of their complexity. See
for example Fig. 2.1, where one
can see two distributions separated
by a plane. The distribution on

the left hand side is rather simple,

Figure 2.1: Two distributions separated by a plane. . .
while the other on the right hand
While the distribution on the left side is rather simple, &

the right class has a difficult structure.

side is very complex. In such cases,
discriminative learning techniques,
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which put special emphasise only on the samples close to the decision boundary can
still provide good performance. In addition the decision boundary might be simpler,
i.e., it can be parametrised by fewer parameters. While in that case one has to estimate
fewer parameters the choice of the right set of functions F' remains crucial.

However it was shown that a hybrid classifier which combines the generative and the
discriminative approach can, when combined, lead to even more powerful classifiers
[22, 49].

We will now explain two representatives in more detail, the Hidden Markov Model as
a representative of the generative model class and the Support Vector Machine for the
discriminative models. Later on we introduce the kernel functions of Jaakola et al. [22]
and Tsuda et. al. [49] which combine both methods.
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2.2 Hidden Markov Models

Hidden Markov Models (HMM) are stochastic generative models that have been
applied® successfully to, e.g., Speech Recognition [36] tasks and biological sequence
analysis, such as gene finding and for identifying homologous sequences [17]. Its nature
is to explain a system in a descriptive form [17].

urn 2 urn 3 urn n

o={occeeso o}

Figure 2.2: An urn and ball illustration of a HMM. Each urn corresponds to a specific hidden state of
the HMM. Each urn has its own distribution of coloured balls, where the colour of a ball corresponds
to some observed symbol. In an observation sequence generation process an urn is switched according
to a urn-switch distribution associated with the urn. o is a possible observation sequence.

To give an impression of how a HMM works, we use The Urn and Ball Model as
illustrated in Fig. 2.2. Consider a system with n urns and m different coloured balls.
Within each urn there are a number of coloured balls. Now consider a genie who
selects an initial urn according to some random process. From this urn a ball is chosen
randomly, the colour is recorded as an observation and the ball is put back into the same
urn. A new urn is chosen according to the random selection process underlying the
current urn and the process of choosing a ball recording the colour as observation and
selecting a new urn is repeated a finite number of times. In the end we get a finite ob-
servation sequence that consists of the colours of the balls we have chosen in this process.

For computer scientists it might be more convenient to think of ‘probabilistic’ Finite
State Automata (see Fig. 2.3) with additional probabilities, i.e., the FSA starts in
some state according to some initial state distribution, emits a symbol according to the
distribution of symbols for that state, switches the state according to the probability
distribution of that state and repeats this process finitely often.

Due to the fact that the state-switch and the emission of symbols is modelled as stochas-
tic processes, we speak of a double stochastic process, where the state-switch is not
directly observable - it is hidden.

We will now proceed with a more formal definition of a HMM.

Definition 2.1 (HMM). A First Order Hidden Markov Model
0' = (a,b,p)
1s defined by
e 1, the number of states
e m, the number of symbols (emissions, observations)

o z=1{z,21,..-,2n-1}, the set of possible states of the model

8See also Olivier Cappés web page http://www-sig.enst.fr/ cappe/ on applications of HMMs.
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€; | Prlejlz0] |
eo bo,eq
€1 bO,el

Figure 2.3: Hidden Markov Model with n states and m emissions

e e ={ep,€1,...,em_1}, the set of possible emissions (observations)
Q20,20 Qz0,21 -+ Ozp,zn_1
Q21,20 Az -0 Ozi,2,
e a—
Qzn-1,20 Qzp-—1,21 -+ Qzp1,2p1

transition matriz, i.e., Gz »; (in short a;j) denotes the probability of a transition
from state z; to z;.

bZanO bZO;el e bZOiem—l
e b— 21,€0 Z1,€1 s 21,€m—1
bzn—l;eo bzn—l:el t bzn—lyem—l

emission matriz, i.e., by, ., (in short b;) denotes the probability of emitting symbol
e; in state z;

® D= (P2, Pzys-- 1Pz, ) initial/start state distribution, i.e., p,, (in short p;) de-
notes the probability of the HMM to start in state z; (=the state at time 0)

where the following conditions are satisfied:

i. stochasticity’

n—1 n—1 n—1 m—1
dNopi=1,> a=1,Y a;=1, bij =1 (2.1)
i—0 i i=0 =0

Di, Giy @i, bij € [0, 1]

That means, the variables are probabilities. For example the p's have to sum to 1
since one wants the HMM to start in one of the n states with probability 1.

9For those wondering what q stands for. It denotes the termination probability, which is introduced
in Definition 2.3.
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ii. first order property

Pr(s;11 = 2j|8¢ = 23, S4—1 = Zgy---, 50 = 2,0") = Prls1 = zj|sy = 2i,0']
Prlo; = ej|s; = 2, S4—1 = 2k, ..., 50 = 2, 0] = Pr[o,= ejlsy = 2, 0']
= by (2.2)

Thus the current event depends solely on the most recent past event.

i1i. stationarity (time independence)
a;j and b;j as defined here are time-independent, i.e., the HMMs parameters

Vit aij = Pr(sip1 = 2550 = 2], bij = Prlog = ej]sy = 2] (2.3)
remain constant over time.

w. independence of observations
This is the assumption that the observation in the current state is statistically in-
dependent of the other observations in their corresponding state

T—1
Pr[og,01,--.,07-1|80,81,---,87-10"] = H Pr(o;|ss, 0']. (2.4)
=0

Definition 2.2 (Observation Sequence, State Sequence). We define:

e 0 = (09,01,...,07-1) is called observation sequence, o, € e denotes the observa-
tion at time t

e s=(sg,81,...,87-1) is called state sequence, s; € z denotes the state of the model
at time t

o T is the length of the observation sequence

The model starts in some state sy according to the start-state distribution, emits a
symbol oy switches the state according to as, s, and repeats this procedure up to sr_;
emitting oy_1.

Since we also want to model the length of the sequence and specific end-states, we
introduce the following extension to the original HMM 6'.

Definition 2.3 (HMM with end-state distribution). We define

0 = (a7 b7 p7 q)7

where @ = (Qz0: 9215 - - -1 4z,_,) S the terminal/end-state distribution, i.e., q,; (in short
qi) denotes the probability of the HMM to terminate at time T — 1 in state z;, i.e.,
q; = Pr[stop|sT_1 = z;, 0] and call it HMM with end-state distribution.

Remark 2.4. The probability of paths shorter than T — 1 observations is simply zero
(Whenever the HMM terminated, it is unable to emit further symbols). Therefore it is
sufficient to ask for the likelihood to terminate at time T — 1 for the problems we deal
with in the following sections.

There are three problems of interest for HMMs that need to be solved for the model to
make it useful in real world applications:
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Figure 2.4: All n” possible state sequences. The sequence s = (#Zn—2,2n-2,..., 21, 22) is shown high-
lighted.

Problem 1: What is the likelihood that a given HMM @ generated an observation o,
i.e., the likelihood Pr[o|@] that the HMM generates the observation op at time 0, o1 at
time 1 up to or_1 at time T" — 1 considering all possible state sequences?

Problem 2: Given an observation and a HMM 6. Which is the most probable state
sequence (path), i.e., the sequence that best describes observations?

Problem 3: We are given several observations. How do we find the HMM that best
describes these observations, i.e., the model parameters that maximise Pr[o|@]?

We are dealing with these problems in Section 2.2.1, 2.2.2 and 2.2.3.

2.2.1 Model Probability, Forward and Backward Variables

The Model Probability Consider we are given a finetuned HMM which is an estimate
for a certain type of observations. When we are presented some observation o, we might
want to know whether o belongs to this special type of observations or not. We can use
the model probability in our decision rule:

Lemma 2.5. The probability of the model @ = (a,b,p,q), i.e., the probability that the
observation sequence o was generated by the HMM that ends in sT—1, is given by

T2
Prlo|0] = Z Psobso,00 (H aSt,st+1b8t+1,0t+1) qsr_4

all sg,...,8T_1 t=0

Proof.

Prlolf] = > Prfs,0|]

all s

= Z Prlo|s, 0] - Pr[s|6)]

all s
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Since

Pr{sr—1,87-9,...,50,0
R N
PI‘[ST_1|ST_2, ey 80,0] - PI‘[ST_Q, ey 80,0]
Pr[6]
2.2
22 Prlsy_1|sT_2,0] - Pr[sT_a,...,50|0]

we propose by induction

T-2

T—2
PI‘[S|0] = Pr[30|0] : H Pr[3t+1|3t10] = Dso (H a’st,st+1> qsp_q-
t=0 t=0
Considering that
24 T—1 22) T-1 T—1
Prfo]s, 8] "= H Prlog|st, ... ,80,0] = H Pr[o¢|s:, 0] = H bs,.00
t=0 =0 t=0

we conclude with

T-1 T-2
Prlo|6] = Z (H bst,ot> " Pso (H ast,st+1) qsp_1
t=0

all s t=0

T—2
= E:pSObSO;OO HaSt,St+1bSt+1,0t+1 Qsp_;-

all s t=0

Forward and Backward Variables Since the forward and backward variables [17] are
defined on the original HMM, we have to adjust the backward variables for our model
0 while the forward variables remain the same.

t—1 t t t+1
Y F—
Zn—2 ap—14 Ain—1 Zn_2
An—24 Qi n—2
a

ai_q CYZ 5f

Figure 2.5: Illustration of the computation of the forward variables (left) and backward variables (right).

Definition 2.6 (Forward variables o).

ot := Prfog,01,...,01 5 = 2|0']
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In words: o is the probability to be at time t in state z; and observe the sequence
0Qy.-.,0¢.

Definition 2.7 (Backward variables ).

ﬁz = PI‘[Ot_H, Ot42y . .- ,OT—1|3t = Zi, 0]

In words: B¢ is the probability to be at time t in state z; and observe the sequence
O+1,---,07—1 while terminating the sequence in state sp—1.

Lemma 2.8. Using forward and backward wvariables the model probability can be effi-
ciently computed using dynamic programming with Algorithms 2.1 and 2.2 with time
complexity O(n? - T) and space complezity O(nT).

Proof.

Algorithm 2.1 Algorithm for calculating Pr[o|@] using forward variables

{Initialisation}

fori=0ton—1do
gy = pi - boy i

end for

{Induction}
fort=0toT —1do
for j=0ton—1do

n—1
o =N "ai | -a;;-b;
t t—1 7 J:0t
=0

end for
end for

{Termination}
n—1

Prfolf] = ) afr_y -4

=0

Algorithm 2.2 Algorithm for calculating Pr[o|@] using backward variables

{Initialisation}

fori=0ton—1do
ﬁ%{’_1 =4q;

end for

{Induction}
fort=0toT —2do
fori=0ton—1do

n—1

Bi= Bl1-aij bjo

3=0
end for
end for

{Termination}

n—1
Pr{o|6] = > B4 - pibioo
1=0
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Since

n—1
Prlo[6] = ZPT[SO = 2;,00,01,---,0710]
=0
n—1
ZPI‘[O(), so = 7|0 Prlo1,...,0r_1|s0 = 2, 0]
=0

(2.2)

N-1
> pibioo
i=0

and

=2
L

Pr[o|8] = Pr[og,01,--.,07_1,87_1 = %;, terminate in sr_1|@’]

0

= O‘iT—l " qi
%

i

=

Il
o

it is sufficient to show that the forward and backward variables are calculated properly
while being in O(n? - T) :
Correctness of both algorithms follows from the simple fact that

|
—

n n—1
Jj_ i B i _ T a. b
ap = @1 - Gijbje, and B = E :5t+1 @ijbj0p41
i

Il
=)

j=0

which becomes clear from Fig. 2.5. In both, Algorithm 2.1 and Algorithm 2.2, the first
loop requires O(n), the second O(n? - T) and last loop O(n) steps of computation — in
total O(n?-T). O

2.2.2 The Most Probable Path

We are often looking for the most probable state sequence for a given observation
sequence, i.e., we are looking for s which maximises Pr[s|o, 8]. However, since
Pr[s,0,0] Pr[6] Pr[s, 0/|6]

Prislo. 6] = —5. %7 Pro,61 ~ Priojg] * 'is°l6)

it is equivalent to maximising Pr[s, o|].

Lemma 2.9. The probability of a state sequence s, i.e., the probability that an obser-
vation o was generated by a so defined HMM while using only these particular states is
given by

T-2
Pr[s, 0[0] = ps;bsg,00 H sy, 50401050 11,0001 | Asry
t=0

Proof. As in Lemma 2.5

Pr[s,0|0] = Prfo]s,8]- Pr[s|0]

T-2
= psobso,oo Ha3t73t+1b5t+170t+1 Qsr_y

t=0
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Algorithm 2.3 Viterbi - find most probable path
{Initialisation}
for i=0ton—1do
po = Pibio,
Y5 =0
end for

{Induction}
fort=1toT —1do
for j=0to N —-1do
J % b
Nt‘ =0 Sr%anx_l[ﬂtflau]ba,ot
¢ = argmax[u;_;a;j]

0<i<n—1
end for

end for

{Termination}

max Pr[s,0|0] = 0<Iz¥1<35<71[/1§“—1%']

sT-1 = argmax|[uf_gi]
0<i<n—1
{State sequence backtracking:}
fort=T—-2to0do
st = Pyt

end for

Lemma 2.10. The most probable path, i.e the state sequence sg, ..., Sr_1 with mazimal
probability
max  Pr[sg,s1,...,87-1,0|0]
80581587 —1

can be found using the Viterbi algorithm requiring O(n? - T).
Proof. We define

p; = max Pr[sg,s1,...,8 = 2,00,01...,0:6], (2.5)
80,81 5eeesSt—1
i.e., the highest probability along a single path up to time ¢ while observing only the
first ¢t symbols ending in state z;.
Then Algorithm 2.3 calculates similarly to Algorithm 2.1 the most probable path. Here
we exploit that y] = max;[ul_,a;;] - bj,, and use maximisations instead of sums. Un-
fortunately p: does not keep track of the argument that maximises Eq. (2.5). That is
why we do this in an extra array 9} and retrieve the path in an additional backtracking
step later. The effort for the first loop is O(n), recursion requires O(n?-T'), termination
takes O(n) and backtracking requires O(T). O

2.2.3 Training a HMM

In the previous sections we assumed that @ was given. Since we are usually given only
some observations O := (0g,01,...,0x5_1)7 we need to estimate the model parameters
0 = (a,b,p,q), from the given observation “matrix”’!® O, that “best” describe the

0Observations can be of different length. Thus O is not necessarily a matrix
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observations, i.e., we want to find & which maximises Pr[O|@]. Since there is no way
of obtaining the optimal model parameters for the general case, we present two stan-
dard estimation-algorithms. We need more notation: By af(d), S!(d) we denote the
forward/backward variables calculated using o4 whereas b;;(d) := b; The model
probability is then given by

04); "

Pr[O|g] = 1:[ Prfog|6]
d=0

(where we have assumed that observations sequences are independent from each other!!)
and can be easily obtained using forward and backward variables. The presented algo-
rithms take a model'? @ as input and derive an estimate @ from it. Note that if there
are only a few observations some states might never be entered (or some symbols might
never be emitted) potentially causing the model to converge in a local maximum far
away from the optimum (it does overfit). To overcome this problem we introduce so
called pseudo counts II, i.e., we assume that a certain transition/emission is observed at
least II times. That is why it is called pseudo count. While it is in principle possible to
incorporate prior knowledge using different pseudo counts per parameter, it is generally
not available. As a result we restrict to one fixed pseudo value IT for all parameters,
which can be fine tuned in model selection.

Baum Welch Training The Baum-Welch Algorithm [4] is an Expectation Maximisa-
tion Algorithm which has been proven to be a local optimisation technique [4]. However
there might be numerous local maxima, such that convergence to a global extremum,
the critical point, is not guaranteed.

Here p,q,a,b denote the new estimates for the model parameters. The re-estimation
formulas presented in Algorithm 2.4 can be derived from Baum’s auxiliary function [4]

£(6,8) =" Pr[f,0|8]log(Pr[f, 0[6])
f

by applying the standard constrained optimisation Lagrange multiplier technique to 0.
Note that in this formulation f is used as function and state sequence f = s. It has
been proven that R R
max[f(6,8)] — Pr[O, 6] > Pr[O, 6],
0

i.e., maximisation of f (0,@) results in increased model probability. As convergence
criteria we monitor | Pr[O|@] — Pr[O|0]|. When it falls below a certain value or the re-
estimation process takes longer than the maximum number of specified iterations the
algorithm terminates.

Viterbi Training The computational costs for Algorithm 2.4 can be quite high ( each
iteration has an effort of O((N + M)N -T) ). That is why Viterbi Training is some-
times used as an approximation. The re-estimation procedure is described in Algorithm
2.5. However this algorithm does not maximise Pr[O|0] but Pr[O|0,s], where s is the
maximum path derived in Algorithm 2.3.

" Observation sequences might even have different lengths T.
12The initial model is obtained by random initialisation of all model parameters.
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Algorithm 2.4 Baum Welch Algorithm - estimate @ from observations
Require: 7,¢ { Termination conditions}

{7 limits the number of iterations}

{e is a limit on the improvements of Pr[O|0]}

{Initialisation}
Z := 0 {Number of Iterations}
P := Pr[O|6] {Model Probability}

repeat
P="P
fori=0ton—1do
{Estimation of p}

N—1 ;
| ap(d) - By (d)
Pi=NTN T <H+;) Prlo4|6]
{Estimation of q}
~ — O‘Td 1 ( BTd 1(d)
%= N+N il <H+Z od|0]

{Estimation of a}
for j=0ton—1do

N-1 1 Ta—2 ’
R I+ ;} w ; ai(d) 'aijbj,0t+1(d) '/3g+1(d)
aij = N-1 Ti=2 .
N-TI+ ) Prioald] Z oy (d) - B (d)
d=0 t=0
end for

{Estimation of b}
for j=0tom —1do

N-1 1 Ty—1
. + Z Pr[0d|0] o, (Z B at(d) /Bt(d)
b.. — Od)t €;
W Ty—1
M -1+ Z Pr[od|0] Z at
end for
end for
P := Pr[0|d]
IT:=7T+1

until (Z > 7) OR (|73 —Pl< 5)

2.2.4 Higher Order HMM

The descriptive power of first order HMMs can be limiting. For this reason one can
extend the order of the underlying markov chain and define:

Definition 2.11. A HMM is of Q-th order when the underlying markov chain is of
higher order'®, i.e., transitions depend on the previous ) states

Q(ig,ia_1,i1),] — Pr[syy1 = Zj|3t = Zigy St—1 = Zigy -+ St—Q41 = Zig)-

!3While not common in literature one could as well increase the order for observations, i.e., an obser-
vation depends on the previous € states not only the current one b(;, i ,,....i1),; = Prlo: = ej|s; =
Zity St—1 = Zigy ..y St—Q—1 = Zig).
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Algorithm 2.5 Viterbi Training- estimate 6 from observations

Require: 7,¢ { Termination conditions}
{7 limits the number of iterations}
{e is a limit on the improvements of Pr[o|0]}
Z := 0 {Iterations}
P := Prs, 0|0] {Average Viterbi Path Probability}
P=T-1,Q=1I-1
A=1I-1,, B=1I-1, {Absolute Counts}
repeat
P=P
ford=0to N —1do
Calculate Viterbi path s for oq4
fori=0ton—1do
P; = P; 4 04, ,.; {obtain absolute counts for P;}
Qi = Qi + 051, _,,2; {obtain absolute counts for Q;}
for j =0ton—1do
A=A+ ngf 05,,2:05,41,2; 10btain absolute counts for A;;}
end for
for j =0tom —1do
B;; = B;; + Z;‘Fiaz 05,,2:0(04).,e; {0ODtain absolute counts for B;}
end for
end for
end for
fori=0ton—1do
{Estimation of p}

i = %
{Estimation of q}
q; ‘= ?v

{Estimation of a}
for j=0ton—1do
Qi = %
Zk:o Ak
end for
{Estimation of b}
for j=0tom —1do
_ Bij
bij - E;::(Jl Bin
end for
end for

P = Pr[s,0|§]
T:=7+1
until (Z < 7) AND ([P - P| <)

Lemma 2.12. Higher order models can be mapped to first order models (cf. [17]) by
mapping each of the high order states to new states z' of the order-th cross-product

Z s zxzX-xz=2"

Proof. We define z; = (2j, 2iys Ziss - - - » Ziqy1) a0d 2] = (25, Ziys Zigs - - - 2ig)- Then the
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claim is easily proven by

Pr[s;1 = zj|st = 2] =

= Prlsir1 = 2j,5t = Ziy, $t-1 = Zin, - - -, 564042 = Zigy, |5t = Ziy,
St—1 = Zigy«++ 5 St-Q+1 = Zig]
= Prlsi11 = 2j[st = 2iy, 5t-1 = Zigy -+, 5t-Q+1 = Zig)s

i.e., when the model has been in states z;, ... z;, before, the joint probability of having
been in the states z; ...z, , while going to state z; is the same as the probability of
switching to state z;. One simply does not gain any information since the outcome was
known before. U

While one can conveniently reuse first order HMM code, one should keep in mind that
most of the algorithms have an effort of n? - T, which becomes (nQ)2 - T making higher
order HMMs intractable with this approach.

For this reason we propose to use higher order observations, i.e., we map the emissions
to the cross product of emissions

e+—>e><e><---><e:e9.
N———

Q

This way the number of states remains constant, but the number of observations grows
exponentially. However, when the number of observations is small one can efficiently
use higher order models using this “alphabet trick”.

Definition 2.13 (Linear HMM). A Linear HMM is a HMM where the underlying
markov chain is linear: It consitsts of as many states as the observation sequence is
long, i.e., n =T while the transition parameters are fixed to

* po =1,
® Yocicn—2: @iir1 =1,
e g, 1=1
while all other transition parameters are set to zero.

Remark 2.14. The only state sequence with non-zero probability is zg,21,...,2n1, @-€.,
viterbi training (cf. Section 2.2.3) is equivalent to baum welch training in the case of
linear HMMs. In practice, one would even skip the step of computing the most probable
path (since it is known beforehand) and only count the frequencies of the symbols for each
time t independently which is correct due to the assumption of independent observations
(2.4). The obtained frequencies for symbol e; and time t are then simply by;.

Lemma 2.15. A linear HMM 6@ = (b) with m emissions and n states is equivalent to
a Markov Model (MM) 8' = (p',a’,q') of m' - n' states, where

r_
e p; = by,
I
® g, = 5i,m-n—1;
A

L] vOSiSn—2 : azj == bi_|_1,j and

® Gn-1;5 = 0n—1,
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Figure 2.6: The markov chain corresponding to a linear HMM whose alphabet has been mapped to
Q-th order. For each observation we introduce a state, i.e., there are M - T states in the end.

as in Fig. 2.2.4. More generally, a linear first order HMM where the alphabet is mapped
to be of Q-th order is equivalent to a markov chain of Q-th order.

Proof. Since transitions are allowed from layer to layer only, the model probability of
the MM becomes

T-2

g _ .t / /
PT[S |0 ] =Py H By ityemsst—1,5t),5041 Is7-1
t=0Q-1

which is the same as the model probability of the first order HMM with
“alphabet order” 2
T-1

Prlo|0] = H bsta(otfﬂ-l—l:---aot—laot)’
t=0-1

where the state sequence of the markov chain is in one to one correspondence to the
observation sequence. We are therefore able to represent higher order MM using first
order HMMs with higher order alphabet. However a linear HMM whose alphabet “is
of order 1,” is in fact a non-stationary model of zeroth order, since the observations are
independent.!* O

11t is often referred to as consensus or probability matrix, see e.g. [40]



2 MACHINE LEARNING 25

2.3 Support Vector Machines

A Support Vector Machine (SVM) [6, 15, 41, 42, 51, 52] is a powerful learning machine.
It is very competitive to neural networks and outperforms them on several learning
tasks.!® Suppose we are given [ training samples. Each training sample consists of a
pair: an input vector x; € IR and the output y; € {=1,+1} which tells us about the
true class belongings of the input (since we are dealing with supervised learning we
know y; for the training samples). Our learning task is to estimate a decision function
f :x+ {—1,41} that predicts the label of any x € IR?, i.e., the function separates the
input x into two classes +1 and —1. What the SVM does is to construct such a decision
function by using the training samples (xz,yz)f\i 61 of the form of a linear separating
hyperplane:

f(x) =sign(w-x+b) (2.6)

Hence, in the formulation of Section 2, one wants to find the classifier f € F, where F'
is the set of linear classifiers, which minimises the risk functional.
So the learning task that remains is to find the normal weights w and the bias b.

2.3.1 The Separable Case

Here we assume that the training samples are separable by a linear hyperplane as defined
in Eq. (2.6). Among the set of separating hyperplanes we choose the one that maximises
the margin (for an explanation see Fig. 2.7) between the two classes such that [6]:

x;-wW+b>+1fory; = +1 (2.7)
x;-w+b<—1fory, =-1 (2.8)
= y;i(x; - w+b) > +1 for y; = +1. (2.9)

We denote H;, Hs as the hyperplanes that are parallel to the decision boundary H =
w-x+ b= 0 and for which the condition (2.7) respectively (2.8) is sharp (such x; exist
for proper w, b).

H:x;-w+b=+1
Hy: x;-w+b=-1

The perpendicular distance between these hyperplanes is given by ﬁ and is called

margin. It achieves a maximum for the minimal @ that satisfies Eq. (2.7) and (2.8).

Why is a large margin desirable ?

Counsider a decision function which achieves only a small margin between the two classes.
Hence there is little scope left for perturbations on f and unseen samples x. On the
other hand when a classifier f achieves a large margin, it will be more robust in patterns
as well as in parameters, i.e., slightly perturbed patterns x that were far away from the
margin before, will still be given the same label. When one changes the parameters of
f, i.e., w or b slightly, one would similiarly expect [45] the same label for examples far
away from the decision boundary. For linear classifiers without bias, i.e., b = 0, it was

15See also Isabelle Guyon’s web page http: //wuw.clopinet.com/isabelle/Projects/SVM/applist.html
on applications of SVMs.
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Figure 2.7: Illustration of the margin. On the left hand side you see the objects belonging to the class
y = —1 which are separated by the linear function w - x + b = 0 from the objects of the other class
y = +1 on the right hand side. Within the dashed lines, which are corresponding to the hyperplanes
H, and Hs, one finds the margin of size @ The vectors lying on one of the dashed lines are called

support vectors. This figure is taken from [45].

proven in [3] that the test error is in principle'® bounded by the sum of the fraction of
training samples lying within a certain margin p and a more complex term proportional
to p, whereas the letter term decreas with the number of training samples (here R
denotes the smallest radius of a sphere that contains all samples x). Thus, the classifier
that achieves maximum margin for a certain number of training samples is guaranteed
to give the smallest test error.

It is therefore a good idea to choose the classifier with maximum margin among the
separating functions.

To maximise the margin we have to minimise 3 |w| with respect to the constraints
(2.9) which leads to the following convex quadratic optimisation problem [6]:

1
minimise 2 || w||?
subject to yi(xi-w+b—-1>0,9=0,...,N — 1.

To solve this we use the technique of Lagrange multipliers. Our constraints ¢; are of the
form ¢; > 0. The rule is to introduce positive Lagrange multipliers A;, (¢ = 0,..., N —1)
one for each constraint, multiply them with each constraint ¢; and subtract them from
the objective function, which gives the Lagrangian:

N—-1
1
Ly = 3| ||w||> — Z Ayi(xi WD) + > A (2.10)
=0

We now have to minimise L, with respect to w, b subject to 61)’\ =0 and \; > 0. Since
this optimisation problem is convex, we can equivalently solve the dual formulation L D

8 The exact inequality is given in [3] but we will leave aside the details and focus on the “message” of
this theorem.
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of the problem [7]:

Maximise Lp with respect to A subject to aaL—wD =0 and ag—bD =0 and A\; > 0. The
solution of the so called “Wolfe’s Dual” has the same solutions w, b, A like the primary
minimisation problem L,,.

dL
d—vf =0=w— ; )\Zylxz (2.11)

dLp
E =0= ;Azyz

Plugging these conditions back into Eq. (2.10) we conclude in the dual objective:

2
Lp = % SOl = Xy | x> Az | + DA (2.12)
i i j i
= % D hwixic > Nyixi — Y NiyiXi - Y AiyiXi + 3 Ai
i i i j i

== Z )\Z - % Z )\i)\jyiiji . Xj.
%

1,

The remaining task is to maximise Lp subject to A\; > 0:

Karush Kuhn Tucker Conditions for the primal problem L, The Karush Kuhn Tucker
Condition [24, 27] as shown in the following, can in principle be derived for any con-
strained optimisation problem. They state that at a saddle point the derivatives of L,
with respect to the primal variables must vanish, i.e.,

oL al .
Wj i=1
N
oL,
Ry (2.14)

subject to the constraints

yi(x;-w+b) —1>0 1=0,...,N—1
Ai >0 i=0,....N

The Karush-Kuhn-Tucker complementary conditions state
Ailyi(x;-w+b) —1)=0 1=0,...,N—-1 (2.15)
and can be used to obtain b as will be explained in the next paragraph.

The examples corresponding to Lagrange Multipliers with A; > 0 are termed support
vectors and lie either on one of the hyperplanes H; or H as follows from Eq. (2.15) since
for A\; > 0 must hold y;(x; - w 4+ b) — 1 = 0. Consider we have found A\; which maximise
Lp we get w from Eq. (2.11) (or equivalently Eq. (2.13)) and b from Eq. (2.15) for some
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Ax # 0. Hence the solution is given by

N
W= Aigixi
i=1

) N-1
b=——Xp - W=1yp — X" (Z Aiyixi)
i=0

Yk

and we finally get the resulting decision function

) N-1 ' N-1 1
f(x) =sign (Z AiYiXi - X + b) = sign ((; Ay - (X — xk)) + y—k> . (2.16)

1=0

2.3.2 The Non-Separable Case

Since most of the problems are not separable by some hyperplane the so called softmar-
gin was introduced [15]. For that case we define slack variables &; and reformulate the
problem as follows

x;-wH+b>4+1-¢&, fory; =1
xi-wW+Hb< -1+, fory; = -1
&>0 Vi

Note that (3, £)* is an upper bound on the training error.
The new quadratic programming problem is:

2
Minimise @ +C 0, ¢)*, where C is some constant regularising term (the higher C
the more get training errors punished).

We choose k = 1 and formulate the “Wolfe’s Dual”:

Maximise

1
¢ 2y

subject to 0 < X\; < C and ), A\jy; = 0. Note that the dual problem differs only in the
additional constraints on A; which are now upper bounded by C.
Thus the solution is again w = Zi]i_ol AiYiX;.

2.3.3 Kernel Functions

Up to that point all the SVM does is to construct a separating hyperplane with max-
imum margin in input space. Since a linear classifier might not be sufficient for more
complex problems, we introduce a mapping ® : R” — F which nonlinearly!” maps
an input vector x into some higher dimensional feature space F' [1, 6]. Since in the
training process of the SVM and in the decision function only dot-products ®(x) - ®(x’)
are calculated, i.e., ®(x) is never used explicitly, we may introduce a kernel function

17 F might be infinite dimensional
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feature

(©

Figure 2.8: (a) a linear separation of training points is not possible without errors. (b) a nonlinear
decision function is suggested. (c) the nonlinear function corresponds to a linear function in feature
space. This picture is taken from [54].

K(x,x') = (®(x) - (x')) that replaces the dot product, i.e., Eq. (2.17) changes to
1
Lp= Z A=y Z iy K (%, %;)
i 1,j

and the decision function (Eq. (2.16)) becomes

1=0

N-1 N-1
f(x) = sign (Z Aigi (@(x);i - ©(x)) + b) = sign (Z Xiyi K (xi, X) + b) :
=0

By using a kernel function one skips the step of first calculating ®(x) and instead uses
the “kernel trick,” i.e., one computes the result directly in input space. It was shown
that all symmetric squared integrable functions that satisfy Mercer’s theorem [32] are
valid kernel functions, for details cf. [1, 6, 7, 15, 34, 39]. To see which functions can be
kernel functions see [7, 15, 22, 41].

Example 2.16. We give examples for kernel functions [15]:

1. The Polynomial kernel:

2. The Gaussian RBF kernel:
(=]
k(x,x'):=e ( o )

The choice of a good kernel function is crucial, e.g., the splice site recognition task
solved with an unsuitable kernel (like the RBF kernel [38]) performs as bad as 10%
(see Section 4 for details). We get much better results when using one of the kernels
introduced in Section 2.4.
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2.4 Improved Kernels for Splice Site Recognition
2.4.1 The Locality Improved Kernel

The Locality Improved Kernel has successfully been applied to tasks as ‘Recognition
of Translation Initiation Sites’ and ’Splice Site Recognition’, where local information
between the observation symbols seems to be highly important [55]. In all these ex-
periments the parameter ds (see below) which is related to global information between
the windows, was set to 1, since other values decreased the SVM performance, i.e., only
local information was used.

Definition 2.17. The Locality Improved Kernel [54, 55] (LIK) for two sequences x and

x' is defined as
d2
T—1 @

+1
K(x,x') = Z w; Iy (%, x') ,
t=0 \j=—I

where

Iy(x, %) 1, z=ux
X,X) =
0 0, otherwise

Comparing this to the polynomial kernel where x and x’ are binary vectors'®

d d
K(X,X’) = (X ) xl)d = (Z Z; - x;) = (Z IZ-(X,X’)>

one clearly sees that the LIK is an extension to the polynomial kernel. For two sequences
x and x/, it computes the weighted sum of match functions for subsets of size 21 + 1

pairs
3 of bases in each sequence (shown grey in
d Fig. 2.9), which is illustrated as comput-
d, (‘) ing the binary dot product (.,.). Then
these are taken to the power of di. As
a result even more correlations can be
taken into account. Finally correlations
between these windows can be utilised by
adding the results from all patches and
taken their sum to the power of do, which
leads to the LIK. While the parameter da
is in one to one correspondence to d and
can be used to adjust the amount of in-

()

Figure 2.9: The principle of how the Locality Im- formation gained from relations between
proved Kernel works. The sequences x and x' con-  the inner windows (global information),
sist of only two symbols for simplicity. See text for the parameters [ and d; can be used to
explanation. This picture is based on [43]. adjust the amount and kind of local in-
formation that is to be used, i.e., the relations in each of the windows of size 2 + 1.
Here [ controls the size of the window and d; how many terms are taken into account.

18The binary representation of an observation vector o is the “indicator vector” x which contains m-T
entries of values z; € {0,1}, where (Tt-m, ..., Z41).m) = (Feg,00r- -+ 3 0em_1.00)-
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2.4.2 The Fisher Kernel

In comparison to other kernels, the Fisher Kernel (FK) and TOP Kernel (which will
be discussed later), are derived from a probabilistic model. They are guaranteed to
increase performance if, and only if, the true distribution can be parametrised by the
probabilistic model. Other kernels, like the LIK for example make “only” use of certain
structures and are infeririour when the underlying model is good enough.

The Fisher Kernel [21, 22] is defined on some generative model Pr[x|0] (like HMMs).
It is derived from the marginal distribution

Pr[x|0] = Pr[x|0,y = +1] + Pr[x|0,y = —1] :
Definition 2.18. The Fisher kernel is defined as
K(x,x') =spr(x,0)"Z 1(0)spk (X, 0),
where spi 18 the Fisher score
sric(x,0) = (9, logp(x]0),. .., 8, logp(x]0)) " = Vg logp(x,8),

and Z is the Fisher information matriz Z(0) = Ex [SFK(X,O)SFK(X,O)T| 6], which is
sometimes omitted in practice, i.e., Z = 1y, or approxvimated as Z;; = 6z~jai2, where o;
is the variance in dimension i [43].

The Fisher Kernel uses a local metric, defined on the generative model, to compare two
sequences x and x’. As an advantage over the LIK where the sequences have to have
the same length (since it counts matches), the FK can deal with sequences of arbitrary
length, making it the kernel of choice in a number of applications like speech recognition
and DNA analysis.

Recently [49, 50] the TOP kernel was derived and it was shown to outperform the FK
on certain tasks. We will deal with it in the next subsection.

The Fisher Kernel from HMM We are now going to derive the Fisher Score from a
mixture model of HMMs

Pr[x|0] = aPr[x|0,y = +1] + (1 — o) Pr[x]0,y = —1].

When no negative model Pr[x|@,y = —1] is available one can do without, by just
setting Pr[x|@,y = —1] = ¢ to some constant c¢. The parameter « is the prior of the
class conditional distribution Pr[x|@,y = +1], i.e., @« = Pr[y = +1|0] which can be
tuned using a binary search in the interval [0, 1]. The partial derivatives for  are given
by:

OlogPr[x|0]  Olog(aPr[x|0,y = +1] + (1 — a) Pr[x|0,y = —1])
Oa B Oa
Pr[x|0,y = +1] — Pr[x|0,y = —1])
aPr[x|0,y = +1] + (1 — a) Pr[x|0,y = —1]
1

- w (Pr[x|6,y = +1] — Pr[x|0,y = —1))
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Together with the partial derivatives for 8; they make up the Fisher score:

a6,
_ Olog(aPr[x|6,y = +1] + (1 — ) Pr[x]6,y = —1))
B a0;
- 1 OPr[xly =+1,6] . 9Pr[x|y=—1,6]
= e (a 26, +(1-0a) a0,

Notice that one of the addends in the last sum is always 0 when the set of parameters
in the positive model is disjunctive from the set of parameters in the negative model,
which is usually the case. The model probability Pr[x|@] and the partial derivatives
0; Pr[x|@,y = £1] are derived in Section 2.2.1 and Section A.1 respectively.

2.4.3 The TOP Kernel

Consider we have trained two generative models, one for positive samples Pr[x|0.] and
one for the negative class Pr[x|6_].1
Recall the Bayes decision for the true model Pr[x,y|6*] :

f(x) = sign(Prly = +1Jx, %] — Prly = —1|x, ")
= sign (@ - (aPrx|ly = +1,0"] — (1 — a) Pr[x|y = —1,0*])>
= sign (aPr[x|0%] — (1 — a) Pr[x|6%])

Here « is the prior for the positive class conditional distribution, i.e.,

a = Prly = +1|0”]. When not taking the difference but the quotient of the posterior
probabilities this decision function remains equivalent (except for the pathological case
where the negative distribution is zero):

)
f(x) = o Prix(0%] :
L ey > L

<1

Taking the logarithm of this quotient (we need to assume that both distributions are
nonzero) leads to the still equivalent formulation of the posterior log odds

sign (log ((1 fz;[glﬁz*_] ))

= sign <log(Pr[x|01D — log(Pr[x|6*]) + log (%))
= sign (log(Pr[x|6%]) — log(Pr[x|6*]) +b),

f(x)

where b is the bias term.
We are interested in the decision boundary v(x,8*) = 0, where

v(x,0) := log(Pr[x|0.]) — log(Pr[x|0_]) + b.

19This is a slightly different notation, which is introduced to underline two separately trained generative
models. We usually use 8 = (64, 6_,a) and Pr[x|y = ¢, 0] = Pr[x|0.], where c € {+1,—1}.
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However 8* is not known. We use Taylor approximation to estimate the decision bound-
ary

p
v(x,0%) ~ v(x,0)+ > v(x,0)(6; — 6;)
=1
= STOP(/é,x)-W
where
STOP(aax) = (v(xa§)7891v(x’§)""aaepv(xﬂa)))
W= (1’0Y_0A1’"'70;_ép)Ta

and @ is an estimate for * obtained, e.g., by maximum likelihood learning. While we
can compute srop(8,x), we still find the unknown model parameters 8* in w. We can
use, e.g., SVMs (or any other linear estimator) to estimate w.

Definition 2.19. Since the Tangent vector Of the Posterior log-odds (TOP) constitutes
the main part of the feature vector syop(0,x) the inner product

~ ~

K(X, X’) = STop(a, X)TSTOP(Q, XI)
is called TOP-Kernel [49].

The TOP Kernel, while applicable to the same type of problems, empirically outper-
forms the FK as observed in [44, 50]. Furthermore it was shown that the convergence
rate when combined with an optimal linear classifier (which is not available in practice)
is O(+). This shows the existence of a very efficient linear boundary in the TOP feature
space. However estimators of linear classifiers typically have a slower convergence rate
of O(N'/2) [29], leaving room for improvement by doing, e.g., careful model selection.

The TOP Kernel from HMM  Similiar to the FK, the model probability Pr[x|§] as
required in the first component of the score vector s;op(0,x) and the partial derivatives
of the model probability were derived in Section 2.2.1 and Section A.1 respectively.

How to use FK/TOP from HMM We summarise the steps required to use the Fisher
or the TOP kernel on HMMs:

1. Train a HMM 6, on the positive examples
2. Train a HMM 6 _ on the negative examples

3. In the FK case, one has to tune o which is not required in the TOP kernel case,
since it is implicitly obtained by the linear estimator.

4. Compute the score vectors and train linear SVM in this new feature space or
compute SVM using the kernel.

Note that computing the model probability and the derivatives of the HMMSs requires
O(n? - T), for each computation of the kernel. It is therefore inevitable to use caches.
While we use them for forward and backward variables or the explicitly computed
features our implementation also makes use of kernel caches.



34

2.4.4 Connection to the Locality Improved Kernel

Intuitively there is some connection between the FK and the LIK. In this section we
will workout this relation more carefully.

Lemma 2.20. For given l,di,do> there exists a Markov Model such that the Fisher
Kernel using a diagonal matrix Z = c- 1p derived from this Markov Model is equivalent
to the Locality Improved Kernel, i.e., Kprx(x,X') = Kpisher(X,X'), Vx,%', where c is
some constant scaling factor and D is the number of parameters of the Markov Model.

A sketch of the proof, supported by the simplest non trivial example, is shown in the
appendix. Hence we can concentrate on the interpretation of this lemma. Actually
when Jaakola and Haussler introduced the FK in [22], they used a constant MM in an
experiment (eq. (10) in their paper), which is almost the same as using the LIK where
the sum over [ is dropped, i.e., only one term is taken and the remaining parameters are
set to d; = 1, and ds = 1. In this case the LIK does no more than counting matches,
which again is no more than the conversion of a sequence into a binary vector and then
computing the dot product of these two sequences. The new idea in the LIK is to make
use of local correlations which are taken into account for [ > 1, di > 1. Equivalently
one could in principal consider {2 observations as one observation and then compute a
(although high dimensional) binary vector from that. However the LIK does this job
implicitly.

As a result we expect better performance for SVMs using the FK on linear and more
sophisticated HMMs.
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3 Data

3.1 Caenorhabditis Elegans
3.1.1 Introduction

The Caenorhabditis elegans [18][33] (Greek. kaino recent; rhabdos rod; Latin elegans
elegant) is a nematode. These are unsegmented worms with elongated, rounded bodies,
and are pointed at both ends, which are mostly free-living although some are parasitic,
and can be both aquatic and terrestrial.

C. elegans is very small, growing to about 1mm in length.It feeds on microbes such as
bacteria.

Figure 3.1: A picture of the lmm long nematode C. elegans drawn to a scale of 1:140.

Judging from these facts the question arises why a large number of scientists are studying
C. elegans, although it seems pretty insignificant to man.

Belonging to the eucaryotes (as humans do) this nematode shares many of the essential
characteristics that are central problems of human biology. The worm undergoes a
complex process of development, starting from a single fertilised egg, proceeding through
morphogenesis and growth to the 959-cell adult. There a two sexes, a hermaphrodite
which makes up 99.95% of the population and a male. Tts DNA consists of approximately
97 million base-pairs encoding an estimated number of 17,800 distinct genes. Seemingly
insignificant, it has a nervous system (about 300 cells are neurons) and a sensory system
equipped with sensors for taste, smell, temperature. It is even capable of rudimentary
learning and although C. elegans has no eyes, it might respond slightly to light exposure.
In its life span of 2-3 weeks, it produces sperm and eggs, mates and reproduces.

The almost ideal compromise between complexity and tractability made the South
African biologist Sydney Brenner start the C. elegans project back in 1963. In the
experimental setup the worms were usually grown on petri plates seeded with bacteria.
At the end of 1998 the whole genome of this worm has been sequenced. It was discovered
that C. elegans is diploid, i.e., cells contain a pair of homologous chromosomes and that
each cell has five pairs of non-sex chromosomes (I-V) and a pair of sex chromosomes
(X) [33]. Worms with two X chromosomes develop as hermaphrodites, while those with
a single X chromosome become males.

By studying the worm scientists hope to extrapolate their lessons to humans. They
have already learned crucial lessons about,e.g., Alzheimer, aging [48] and cancer [16].
The task before us is the modelling the splicing process. Since the worms DNA is
pretty well understood, the number of labelled examples is very high. This gives a good
starting point for analysing the performance of different machine learning methods.

3.1.2 Datasets

The data was extracted from the chromosome and GFF files at http://genome.wustl.
edu/gsc/C_elegans. This dataset is expressed sequence tag (EST) supported. ESTs
are small pieces of mRNA normally of < 700 nucleotides in length and obtained after
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only one round?® of sequencing [9]. In principle, the sequences are obtained outside the
nucleus from cytoplasmic extracts. Recall that the splicing process does happen in the
nucleus. It is therefore almost certain that ESTs, being found outside the nucleus, were
already processed, i.e., spliced. As a result one can detect splice sites, by aligning ESTs
to DNA. Since the latter still contains introns one can figure out the start of the intron
(i.e., 5’ site) and the end of the intron (3’ site).

We only consider canonical splice sites, i.e., splice sites that contain canonical dinu-
cleotides GT and AG for donor and acceptor sites. These make up the vast majority
of splice sites, e.g., 98.71% of the mammalian GenBank EST supported splice junction
pairs are canonical while the fraction of canonical splice sites might be as high as 99.24%

[9].

0 25 4950 75 100
CT...GTAGAGC| TGTACGTACGACGTACGTCAAGCT AG GAGCGCAACGTACGTACGTCCAGT |[AGAAGGT...GA

Figure 3.2: A window around a true splice site of length 101 base-pairs. The first 51 bases are intron,
the next 50 bases, starting with GA, exon. The extracted positive example is shown framed.

Acceptor site  Windows of -51 to +50 around the true splice site were extracted. From
these windows, we extracted smaller windows of length 50 (c.f. Fig. 3.2) and removed
duplicates. For the true site’s windows this leads to 74,455 positive acceptor examples.

0 27 5253 78 100
CT...GTAGAGCTGT| ACGTACGACGTACGTCAAGCTAGG AG CGCAACGTACGTACGTCCAGTAGA |AAGGT...GA

Figure 3.3: Extraction of a 50 base-pair decoy window, by shifting the window 3 positions downstream
to the next occurence of AG. All decoys are constructed such that AG is at positions 25 — 26 too.

To construct negative examples we extracted all windows of length 50 that seem to be
canonical splice sites, i.e contain AG at positions 24 — 25 from these 101 base-pair long
windows (c.f. Fig. 3.3). From these decoy windows we then removed all sequences that
matched a positive example. This results in 122, 154 negative examples, where the AG
is positioned at the same place as in the positive samples.

Donor site The construction process is the same as for the acceptor site, except that
the large window is 100 bases long (instead of 101). The windows were —50 to +50
around the true site. The first 50 bases are exon, the next 50 starting from GT are
intron. In all the extracted sequences GT is at positions 25 — 26. This leads to 74, 505
positive and 177,061 negative examples.

Embedding in a genefinder All our training samples are windows of length 50 centered
around AG which were taken from the nearby positions —25 to +26 around the splice
sites in the acceptor case. Hence the relatively good results we get in the experimental
section are only valid when we are presented samples lying within that 51 basepair
window. We therefore strongly depend on a genefinder, that will “filter” sites not close
to the true site.

20Usually the pieces of DNA are sequenced more than once to get 99.99% accuracy. Furthermore only
parts of a chromosomes can be sequenced. Thus overlapping sequences must be aligned properly to
form a fully sequenced chromosome.
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3.1.3 Preliminary Analysis

The performance of the models that will be shown in the experiments section heavily
depends on careful model selection. However since the number of tuneable parameters
(the number of states, the pseudo count, the used normalisation in FK/TOP experi-
ments, the “optimal” window size) is too high, to be taken into account for all types of
HMMs a preselection is done using the simplest type of HMMs, the linear HMMs.

We trained 207360 linear HMMs?! on 100, 1000, 10000 and 100000 donor and acceptor
site training samples averaging the results using 5 different data splits. All models were
trained on the training set, the optimal parameters were selected on the validation set
while finally the test set was used to get the performance of the models. We varied the
order of the HMMs obtained from the positive samples as well as HMMs trained on
the negative samples from 1 to 8 and used different pseudo counts (10~1°, 1072, 101,
1, 5, 10, 50, 100, 1000) in all of these combinations.

In Fig. 3.4 and 3.5 both, the negative and the
positive model were trained on training set
sizes of 100, 1000, 10000 and 100000, which is
shown logarithmically (log1o) on the x-axis. For
each training set size the order was varied from
1-8 while both, the negative and the positive
model were using the same order. This is
shown on the y-axis. The colour corresponds to
the classification performance achieved on the
validation set using the optimal pseudocount for
that particular order and training set size. In
both figures one realises that the optimal choice
of the order depends on the number of training
examples, i.e., to get best performance one has to use HMMs of order 1 when only 100
training samples are available. As soon as the number of observations becomes larger,

performance increases regardless of the order.
However higher order models perform favourably

to lower order models on large training sample
sizes. Onme clearly sees that on 100000 samples
the optimal order is 5-6 for the acceptor site
and around 5 on the donor site. When deciding
which order to use one should follow Occams
Razor and choose the lowest order that achieves
good results, since the number of parameters
increases exponentially.

We summarise:

e Performance increases with the number of
training samples.

e High order models (order in the range of 5-6)
outperform the rest when using a large number of samples.

e For a small sample size lower order models achieve better results.

of the HMMs.

25 45 5

3 35 4
Nurnber of samples (logarithmic)

Figure 3.4: Order vs. number of training
samples on the acceptor site.

25 45 5

3 35 4
Number of samples (logarithmic)

Figure 3.5: Order vs. number of training
samples on the donor site.

Biologically, it is know that there are dependencies within codons, but we did not expect
to find correlations of order > 3 which means that one finds dependencies between

Linear HMMs can be trained very efficiently. They are explained in Definition 2.13.
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triplets which help to classify splice sites. There are even higher order correlations, but
since the number of parameters is very high one would need even more observations
to train “good” models. If one knew more about the kind of correlation, one could
reduce the number of parameters drastically and thus even a small number of training
examples could be sufficient.

We will now debate the question of the optimal choice of the pseudo count.

Similiar to the discussion of the optimal choice
of the order, we show the performance of the
linear HMMs for a set of the pseudo counts
o e {10719,1072,1071,1,5,10, 50,100, 1000}.
We chose to use logscale for both x and y-axis,
while the former describes the pseudo count and
the latter the number of training samples. The
results are shown in Fig. 3.6 and 3.7. Again
both, the negative and the positive model were
trained using the same pseudo count and the
colour corresponds to the best classification
performance achieved on the validation set using
the optimal order for a particular choice of the

(logarithmic)

ning both HMMs.

ount used for trail
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45 5

3 35 4
Number of samples (logarithmic)

Figure 3.6: pseudo count vs. number of
training samples on the acceptor site.

pseudo count and training set size.

Discussion: Again, the performance increases with the number of training samples. In
the case of very few samples a large pseudo count is required to get reasonable results.
For less than 1000 samples in the acceptor case it makes almost no difference which
pseudo count to use. However when the number of samples increases best performance
is achieved for pseudo count 1 and 5 on acceptor sites, while the optimal pseudo counts
seems to be a bit lower on donor sites.

In conclusion:

e In the case of very few samples a high pseudo
count should be used.

e When the number of samples is large, the
pseudo count should be lowered

e Pseudo counts around 1 — 5 result in good per-
formance an a large number of samples.

094

093

ining both HMMs (logarithmic)

idocount used for trai

0.89

The pseudo count is associated with uncertainty © -
of the data. We therefore observe the tendency
that uncertainty (high pseudo count) decreases

with a large number of samples, while in the case  Figure 3.7: pseudo count vs. number of
training samples on the donor site.

-10, 0.88

2 25 45 5

3 35 4
Number of samples (logarithmic)

of very few training examples the model has to be
prevented from owverfitting by using higher pseudo
counts.

While these figures can not capture the relation between the choice of pseudo count
and order, we observe that high order models do require a larger pseudo count than low
order HMMs. This is due to the fact that the simplicity of low order HMMs with only
very few parameters (e.g., first order HMMs have only 200 parameters) already cause
regularisation. On the other hand higher order models which contained up to 3276800
parameters (8th order) tend to overfit when no pseudo count is used.

However this analysis does not treat the parameters of positive and negative HMMs
differently. For this reason we extend our analysis in Fig. 3.8 and 3.9. There we show
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how the performance depends on the training set size, the order and pseudo count,
where the positive and negative HMMs parameters were adjusted independently. The
left column shows the result for the same set of pseudo count values as above while
in the right column performance depending on the order is illustrated. While one can
observe essentially the same tendencies “higher order is better”, “low pseudo count is
better” when the models were trained on a large number of samples, one also realises
that the optimal order is around 5 for positive HMMs but around 7 for the negative
HMMSs?? in the acceptor case. The correlations around the donor site seem to be of 5th
to 6th-order for both positive and negative models (note the almost diagonal shape of
the contour), and thus seem to be lower compared to the acceptor site. In the case of
very few examples one can observe several bumps for donor sites and 2 in the acceptor
case. The trained models are not very stable and such the model parameters vary
greatly, which is a probable explanation for this strange behaviour.

As a rule of the thumb 5th order seems to be the overall best choice.

These illustrations give a good impression of how the pseudo count should be set. In
the acceptor case, the optimal pseudo count for negative models is 5 independent of the
number of samples. For positive models, IT varies in the range of 107'° to 1. From that
we can reason that the structure learned from the positive samples is important, since
it favours small pseudo counts, while the negative HMM could not capture data that
good. However the negative model still performs much better than a uniform one or
no model. Therefore it does help having a negative model. For the acceptor one would
conclude to choose pseudo count IT = 5 for the negative model, pseudo count 101, 1,
1071, 1 for the positive and order (2,3), (2,2), (3,5), (5,6) for 100, 1000, 10000, 100000
samples, respectively, where the first number in a tupel denotes the order of the positive
model, the other the order of the negative HMM.

The situation is similiar in the donor case. Here the best set of parameters is a pseudo
count of 5 for positive and negative models on up to 10000 observations and then 1 on
100000 samples. Regarding the order one should select (1,2), (2,1), (3,3), (5,5).

While one would expect similiar optimal values for the pseudo count and order of other
“non-linear” HMMSs, one should not take for granted that these results are directly
applicable to different types of HMMs. However, one will observe the same tendencies
(like, e.g., “low pseudo count” is better on a large number of samples) and the optimal
values for linear HMMs can be a good starting point.

226n 100000 samples
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Figure 3.8: Performance comparison for linear HMMs trained on the acceptor site on sets of size 100,
1000, 10000 and 100000, while fixing pseudo count or order for positive (x-axis) and negative (y-axis)
HMM separately.
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Figure 3.9: Performance comparison for linear HMMs trained on the donor site on sets of size 100,
1000, 10000 and 100000, while fixing pseudo count or order for positive (x-axis) and negative (y-axis)
HMM seperately.



42

Entropy Entropy is a measure of the average uncertainty of an outcome. Thus the
smaller the entropy the more certain we are of a result. We can use this information to
detect regions of interest, i.e., regions where the signal appears to be non-random and

thus has lower entropy.

Let X be a random variable with distribution Pr[X] for discrete emissions e, . ..

»€m—1-

Then the Shannon entropy is defined [17] by

- i: Prle;]log Pre;].

1=0

As the probabilistic model, we use linears HMM obtained from positive training patterns
and compute the entropy from this model to get some idea about the signal. Here in the
DNA case the poss1ble emissions are A,C,G,T. As log we used the natural algorithm.

04 1

First Order HMM
o
s
o

Fifth Order HMM

"o 5 10 B w5 W ® 4 &5
Figure 3.10: Entropy in a window around
the acceptor site. The entropy obtained
from first order models is shown in the
dashed line while the entropy of the 5th-
order linear HMMs is shown as a blue line.

To present both curves in one figure we use
different scales for each curve. On the left side
is the scale for first order HMMs while the one
for higher order HMMs is on the right. The
distribution is obtained by training linear HMMs
of order 1 and order 5 on 100000 samples, using
pseudo count 5 for the acceptor and 1 for the
donor models. Looking at Fig. 3.10 and 3.11
we notice that the entropy is lower around the
splice sites for both donor and acceptor sites,
which is what we expected. Since no 5th-order
information is available for the first 5 bases,
the plot for 5th-order HMMs starts at position
5. In practice we fill up the observation with
4 more As at the left hand side, such that the
order decreases at this boundary from 5 down

to 1 leading to an artifact. Thus, when not removing the first 5 values, one can observe
a dropping down of the bth-order HMMs curve at the beginning down to the entropy

value reached by first order models.

Furthermore since higher order correlations are
used, which is related to low-pass filtering, the
curve appears much smoother. One can observe
the entropy being generally lower in the intron
(the part from beginning to AG; the part starting
with GT to the end). This underscores that there
is some kind of signal in the intron which is rel-
evant in the splicing process. Only the first/last
few bases (only around 5) in the exon seem to
carry information about splicing. This can be ex-
plained biologically. One theory states that in-
trons were inserted later in the evolution [30].
However only some sites might be well suited to
allow insertions of introns, which might have lead
to some distinguishable bases in some bases of the
exon at the intron/exon and exon/intron bound-

Fifth Order HMM

Figure 3.11: Entropy in a window around
the donor site. The entropy obtained
from first order models is shown in the
dashed line while the entropy of the 5th-
order linear HMMs is shown as a blue
line.

aries. Another biologically justified site, the branch site, might have caused the entropy
to be lower in the acceptor case around positions 9-12 which is only 15-18bp before the
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splice site.

Relative Entropy While the entropy is “descriptive”, i.e., it will tell us where to look
in the area around the splice site, the relative entropy can tell us how much the positive
and negative sequences differ in each positions. It is defined [17] on two distributions
Pr,[X] and Pr_[X]. as

Pr. [ei]
Pr_[e;]’

m—1
H(Pry[[Pr_) = ) Pryej]log
i=0

i.e., it is a weighted sum of the log-odds, also referred to the Kullback-Leibler distance.
While a large relative entropy coincides with a large distance between both distributions,
it is no real metric, since it is asymmetrical. We can use it to detect regions in that
splice sites differ from decoys.

The relative entropy curves underscore the de-
ductions we got from the entropy plots, since the
inverted curves are similiar to the curves we ob-
served for the entropy of both donor and accep- ozl
tor sites. In the acceptor case the branch site is
even more distinctive. Around the actual splice
site one clearly observes a large distance between
positive and negative samples. The difference
is larger in the intron, but still some basepairs
in the exon are discriminative. We again re-
moved the artifact present in the beginning (first °
5 values) of the entropy plot for the higher order
HMM. While in the first order case the curve is
almost zero outside the positions 7—12, 17 — 24,
27, in the acceptor case and 21 — 25, 28 — 35 it
settles on a certain nonzero level for higher or-
der HMMs. While this could give some informa-
tion regarding the splicing process, it could also
be justified by a certain intrinsic structure that ousl
bases have to follow. Since the relative entropy
in the intron drops to the exon level for bases

First Order HMM
Fifth Order HMM

First Order HMM
Fifth Order HMM

i * x « L L X X
0 5 10 15 20 25 30 35 40 45 50

< 10 in the acceptor case and > 42 in the donor
case, we assume the latter. So the choice of a
50bp window around the true site appears to be
reasonable and justified by the above reasoning.

Figure 3.12: Relative entropy plots on the
50bp windows. The upper figure shows
the acceptor, while the figure in the bot-
tom shows the donor results. The entropy

obtained from first order models is shown
dashed, while the entropy of the 5th-order
linear HMMs is shown as a blue line.

Normalisation of the Fisher and TOP Scores When dealing with SVMs which use
the Fisher or TOP kernel from HMMs, it is very important to point out that one cannot
instantaneously train SVMs using TOP /FK in practice since the quadratic optimisation
problem that is to be solved in SVM learning does not converge due to numerical
problems. Why does this happen? Consider that the model probability for the positive
HMM is very small for some sequences. Then in the TOP kernel case, all scores derived
from positive model parameters are divided by this quantity (cf. Section 2.4.3) and
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therefore become arbitrarily large (or small for the negative model). Likewise when both
the negative and the positive model consider a sequence to be very unlikely, similiarly
large values occur in the FK feature scores. Since this causes the score vector for all
features of certain samples to become very large (or small), one has to think of some
normalisation that maintains the relationships between samples, but brings the score
vectors within a certain fixed range. A standard approach is to normalise data such
that it is contained within a sphere, which is done by normalising the variance to be 1
in each dimension independently. In the same step one could as well drop dimensions
with almost zero variance, i.e., < 1075. As another approach one could normalise each
vector x to be to ||x|| = 1. When doing so, all data lies on a hyper sphere of radius
1. In Table 3.1 we demonstrate how the test error obtained on the validation set
impacts on different normalisation techniques. As normalisation techniques we used no
normalisation, ||x|| = 1, variance componentwise 1 and their combinations. Note that
the order of application of these normalisations methods is important.

Finally we scaled the kernel matrix by dividing with the mean of the diagonal elements

K !
K’(X,XI) — - N(X’x)
~ Doimo K (%3, %i)
and computed SVMs on the first two runs using

C € {0.001,0.1,1,2,4,5,7,8,10,100}

on 100,1000 and 10000 samples.

‘ TOP Kernel ‘
size | no normali- IIx|| =1 variance variance norm and
sation and norm variance
100 | n.c. 85.0+2.0% | 77.84+0.6% 80.5+4.1% 84.6+2.0%
1000 | n.c. 96.9+0.4% | 96.1+0.2% 96.04+0.6% 96.7+0.4%
10000 | n.c. 97.94+0.1% | 98.3+0.0% | 98.2+0.0% 98.1+0.3%
‘ Fisher Kernel ‘
size | no normali- IIx|| =1 variance variance norm and
sation and norm variance
100 | n.c. 86.2+2.1% | 80.4+2.1% 85.1+2.4% 85.2+2.6%
1000 | n.c. 96.6+0.4% | 97.5+0.3% | 96.6+0.3% 96.8+0.2%
10000 | n.c. 97.5+0.2% | 97.8+0.1% | 97.5+0.1% 97.6+0.2%

Table 3.1: Classification rate on the validation set using the TOP and FK method on 100,1000 and
10000 samples, with different normalisations.

The result is shown with optimal bias b, i.e., b was adjusted on the validation set to give
best performance. Here the abbreviation n.c. stands for no convergence.

As one can see, performance depends on the kernel and sample size which is used. We
decided to use variance only normalisation, which gives best results on large sample
sizes, throughout all our experiments. One would therefore expect slightly worse results
when the sample size is small.
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3.2 Human Genome
3.2.1 IP-Data

IPData is a benchmark set of human splice site data from the UC Irvine machine
learning repository [5]. It contains 765 acceptor sites, 767 donor sites and 1654 decoys;
the latter are of low quality as they do not have a true site’s consensus dint centered
except by chance. The task is to classify donor and acceptor sites given a position in
the middle of a predetermined window of 60 DNA letters as input. We use this data
set as it is, to benchmark our methods. We did no further investigation on that data
set, but applied our methods as they are.

3.2.2 Preprocessing the Human Genome

UCSC assembled Genome At the University of California Santa Cruz?® a team of
scientists lead by David Haussler (in particular a lot of work was done by Jim Kent to
assemble the genome) in collaboration with the International Human Genome Project,
released the first draft of the Human Genome in May 2000 (cf. [14]). We are using
a slightly newer release of the genome from October 2000 (the CD-ROM?* version).
We used this almost 90% complete (around 75% highly accurate, remaining 25% ‘draft’
quality) Human Genome which can be downloaded at http://genome-archive.cse.
ucsc.edu/goldenPath/070ct2000/chromosomes/. The human splice sites were taken
from SpliceDB [10]. We matched the EST-supported human splice sites prepared back in
1999 from Burset, Seledtsov and Solovyev?® to the newer release of the human genome.

Preprocessing In the given dataset, the window around the splice site is 82 bases
long where the AG and GT is at positions 41-42 in the canonical case. We matched all
sequences in the file HumanAl1Sites onto the whole genome, i.e., 28468 acceptor and
28468 donor sites. At first we generated a file containing all potential splice sites, i.e.,
we took each chromosome, and moved a window of size 82 bp througout the whole
chromosome, writing out sequences that matched AG or GT on the 5 — 3’ or reversed
and inverted on the 3’ — 5’ strand. We then sorted this set of ~ 50 GB and removed
duplicates and then used the unix tool comm to get the sequences that did not match
ezactly (19132 acceptor samples and 19226 donor samples did not match). The ones
that matched to some sequence in the set of all possible splice sites, where in a next step
matched to sequences contained in the file HumanCanonicalSites.ESTsupp+corr.acc,
such that only the EST confirmed sites which were additionally corrected by Burset et
al. remained as positive samples. While this was done quickly overnight on just one
computer, the unvalidated splice sites still had to be matched, requiring ~ 14 days
of computation on 32 PentiumlIII-550 CPUs: The newer release of the genome is of
higher accuracy, i.e., a number of non A,C,G,T symbols like -,N,m,r,w, s,y,h,b,d,k26
have been determined to be one of these four bases. When, e.g., errors like the wrong
alignment of sequences is corrected, one will observe insertions or deletions. For that
reason we used a recent version of the Basic Local Alignment Search Tool (BLAST)[2]

23ht'l'.p ://genome .ucsc.edu/

24This CD-ROM was produced at the University of California, Santa Cruz, Baskin School of Engineer-
ing, by David Haussler, Patrick Gavin, Jorge Garcia, Jim Kent, Terry Furey and Scot Kennedy.
Jane Ades and Darryl Leja at the National Human Genome Research Institute, NIH, produced the
label design.

%5 This data can be downloaded from http://genomic.sanger.ac.uk/spldb/SpliceDB.html.

26See http://www.ncbi.nlm.nih.gov/BLAST/fasta.html for the meaning of these symbols
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from April 2001 to align sequences, which can deal with these issues. BLAST uses a
heuristic algorithm which seeks local as opposed to global alignments and is therefore able
to detect relationships among sequences which share only isolated regions of similarity
(Altschul et al., 1990) [2].

For more details see http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.
html.

We removed the leading and trailing N, - from the splice sites and created a query file
suitable for BLAST. The command line was:

blastall -P 1 -p blastn
-d chromosome
-i HumanAllSites.acc.minus.n.removed.query
-o results/acc.query.chromosome

This query was applied to each chromosome on the missing donor and acceptor sites.
When processing the BLAST output we dropped all sequences that did not match in
at least 40bp and did not contain AG,GT at the position 40 £ 2. We had to allow these

162599931 | chrX small deviations, since bases that were inserted or deleted be-
51513585 | chrY fore the consensus dint were shifted. We finally extracted?’
282193664 | chrl the sequences, joined them with the already validated set of
253256583 | chr2 4893 acceptor and 4823 donor sites and removed duplicates to
227524578 | chr3 form 11908 validated 3’ and 11966 5’ sites. In this process we
202328347 | chr4 lost 3355 (22%) of the acceptor and 3297 (22%) of the donor
203085532 | chrb samples from the 15263 EST confirmed and corrected splice
182415242 | chr6 pairs. However 2034 of the original acceptor and 2112 of the
166623906 | chr7 original donor sites did contain non ACGT characters while the
152776421 | chr8 sequences we got in the end are free from non ACGT charac-
142271444 | chr9 ters. Finally another 23 3’ and 27 5’ sites were removed since
145589288 | chrl0 | they still did contain characters other than ACGT. We also re-
150783553 | chrll | peated the extraction process with no threshold and allowed a
144282489 | chr12 | window of 40 + 3 to generate possible positive sequences. We
119744898 | chr13 | removed all those sequences from the set of possible sequences,
106953321 | chrl4 | to get “negative” samples?®. In a first try we tried to solve the
101380521 | chrl5 | global splice site prediction problem, i.e., we wanted to seper-
104298331 | chrl6 | ate the few positive examples from the very large number of
89504553 | chrl7 | negative samples. This number was still high, since from the
86677548 | chr1l8 | = 50 GB only ~ 300 MB were removed in the last step. Ex-
74962845 | chrl9 | periments showed that the number of negative samples is still
66668005 | chr20 | intractably high. All our classifiers learned the decision rule
44907571 | chr21 “all sequences are non-splice sites.” The classifier could detect
47662662 | chr22 | only very few real splice sites. While one can tune the classifier
3310004818 | total to allow more false positives resulting in a higher sensitivity,
Lable: The sire of each the number of false positives becomes incommensurately high
chromosome in bases. In compared to the number of correctly classified sites. For that
total the human genome is . . .. .
about 3GB (Giga-Bases) in Teason, the process of splice site prediction appears to require
size. a local method. One should therefore concentrate on the de-
tection of splice sites using such local methods and later on embed these in a genefinder,

2TThis is not trivial, since matches were obtained for each chromosome and both strands have to be
taken into account.

2 This set will definitely contain a large number of real splice sites, but still the number of real negative
samples contained in this set is much higher.
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which from the viewpoint of a splice site detector serves as a filter. To our knowledge
no biological experiments have been done, investigating whether the spliceosome will
actually cut down the number of decoys found in non-genetic regions. Such experiment
would give further insight and could finally answer the question whether splice site de-
tection can be dealt with local methods, which is what the spliceosome appears to be
biologically, only.
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4 Experiments

Before proceeding to the actual experiments, we give a short roadmap. At first we
evaluate our methods on the IP-benchmark dataset and show that we achieve very
good results. This suggests that our methods are suitable for the splice site recognition
problem and we expect similiarly good results on the C. elegans data set which we will
be dealing with in the second section. We put our main focus to the detailed discussion
of our experimental results. Finally we present some preliminary results we got on
human splice sites.

4.1 Benchmarking the Methods on the IP-Dataset

When one suggests a new method, one has to justify why and when this method is
superior to previous techniques. While newer methods could be more appealing from
the theoretical standpoint, they might not achieve better results in practice. That is
why they are always evaluated on so called benchmark data. Such data sets are used for
comparison of the methods and have usually no more scientific importance. As methods
we use HMMs?® and SVMs. For the latter we had to choose a good kernel. Thus we
decided to use kernels well suited for the splice site recognition problem as introduced
in Section 2.4: we use the Locality Improved, TOP and Fisher Kernel where the latter
two are derived from HMMs.

For our experiments, we had to perform a careful model selection of the hyper-
parameters of the HMMs and SVMs (cf. [34]). This is done separately on each of
ten random splits of the data of training size 2000, test size 1186. In [37] only a single
same-sized split was used and thus their results do not include error bars. As HMM
architecture we used

(a) a combination of a linear model and a fully connected model for the acceptor sites
(cf. Fig. 4.1, upper)

(b) a combination of two fully connected models for the donor sites (cf. Fig. 4.1, lower)
and

(c¢) a fully connected model for modeling decoys.

These architectures can be biologically motivated: The positive donor model is a con-
catenation of two fully connected HMMs, which were trained seperately on the intron
and exon part respectively. The positive acceptor model uses a linear HMM to model
the intron. This type of HMM was already shown to perform well in Section 3.1.3. The
exon is modelled by a fully connected HMM. Thus each HMM component models the
statistics of either the intron or the exon part, while their concatenation models the
whole splice site. Finally we chose to use small, fully connected HMMs as negative mod-
els due to their simplicity. These fully connected HMMs can capture relations within
and between triplets.

The corresponding number of states in the components, as well as the regularization
parameter of the SVMs are found by 10-fold cross validation, i.e., we split the training
set into 10 parts, train 10 times using 9/10 as training data and the remaining 1/10
as validation data. The parameter combination that gave best average performance
obtained on the validation set was used for testing. We estimated a large number of
HMMs whose number of states was chosen to be 5 — 13 for either component of the

29Qnly first order HMMs were used, which were trained using pseudo count IT = 1071°,
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Figure 4.1: Positive acceptor (top) and donor models (bottom).

positive and the whole negative model. From the positive-negative HMM combination
that gave best results, we derived the Fisher and TOP Kernel and performed model
selection of the regularisation parameter C for each of those SVMs, where

C € {0.001,0.1,1,2,4,5,7,8, 10, 100}.

The SVMs with best average performance on the validation set were used to obtain the
actual performance on the test set.

System Neither Donor Acceptor | Total
LI-SVM 2.0+0.3% | 0.8+£0.2% | 0.9+£0.3% | 3.7%
FK-SVM 2.1+£0.4% | 1.6+£0.5% | 1.6£0.4% | 5.3%
TOP-SVM | 2.2+0.4% | 1.5+0.4% | 1.7£0.3% | 5.4%
HMM 2.6+£0.5% | 1.0+£0.4% | 2.4+£0.7% | 6.0%
RBF-SVM n.d. n.d. n.d. >10%
NN-BRAIN n.d. 2.6% 4.3% n.d.
BRAIN 4.0% 5.0% 4.0% 13.0%
KBANN 4.6% 7.6% 8.5% 20.7%
BackProp 5.3% 5.7% 10.7% 21.7%
PEBLS 6.9% 8.2% 7.6% 22.7%
Perceptron 4.0% 16.3% 17.4% 37.7%
ID3 8.8% 10.6% 14.0% 33.4%
COBWEB 11.8% 15.0% 9.5% 36.3%
Near. Neigh. | 31.1% 11.7% 9.1% 51.9%

Table 4.1: Test-set errors on the IPData data set. All except the first 5 results are cited from
[37], Table 6. The fifth result is cited from [38]. (n.d.=not documented)

Analogously the parameters for the Locality Improved Kernel were selected from:
d € {2,3}, do € {1,2} and I € {1,2,3,4,5,6}, where the SVMs C ¢
{0.4,0.8,1,1.5,2,4,7,10,20}. This process was done on both donor and acceptor sites
independently. We designed the models such that they can only detect canonical splice
sites. Therefore all non-canonical sites immediately show up as wrongly classified. How-
ever this reduced the number of training samples, since only sites that contained the
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canonical AG or GT at position 28 — 29 respectively 30 — 31 had to be taken into account.
Note that not a small number of donor sites did contain an AG at positions 28 — 29, while
a number of acceptor sites contains a GT at positions 30 — 31. This even exacerbates the
problem unnecessarily, since one would not try to distinguish acceptor from donor sites
in practice. Nevertheless this data set is of great value for comparison when not altered
in any way. Thus we obey this rule.

After the above described model selection procedure, each classifier was then evaluated
on the test sets and results are averaged over the 10 runs. The mean and corresponding
standard deviation is given in Table 4.1, which shows the errors on each of the classes
for the IPData data set. Comparing our classifiers we observe that SVMs with TOP
and FK (total error 5.4% and 5.3%) cannot improve the HMM much, which already
performs quite well (6.0%), except in classifying the acceptor sites. The SVM with
Locality Improved Kernel does not suffer from this problem and achieves the best total
error of of 3.7%. To further improve results one should invest more time in fine tuning
the HMMs, since these are generally much more powerful especially when combined
with the TOP or Fisher Kernel as explained in detail in Section 2.4.4.

We observe that the SVM methods outperform all other documented methods on the IP
data set. These include not only the BRAIN algorithms of [37] published recently, but
also other established machine learning methods such as nearest-neighbor classifiers,
neural networks and decision trees. The SVM achieves test-set errors that are only
half as large as the ones of the best other methods. However his was only possible by
choosing a suitable kernel. If one uses plain RBF kernels, one gets worse results than the
BRAIN method [34]. Furthermore this benchmark dataset gives the wrong impression
that detection of acceptor sites is more difficult. In fact the results we get on C.elegans
suggests that it is the other way around.

4.2 C. Elegans

When we started to deal with the classification of splice sites, we had very little prior
knowledge on the problem. In that case one will try the simplest reasonable methods
and learn more about the problem by using them. Among the “simple” methods are
linear HMMs and fully connected HMMs whose results we present first. Later on, we
show how we improved these methods by using specially designed HMMs. On the other
hand we use SVMs to improve performance of our probabilistic models. Note, that
all experiments were done independently on 5 different (training-, validation-, test-set)
splits. The obtained results were averaged, i.e., mean and standard deviation is shown.

4.2.1 Linear HMMs

Linear HMMSs are probabilistic models, which assume that the observations are pairwise
independent. Therefore they can be trained easily and very efficiently. As a result we
were able to do model selection on a large number of parameters as discussed in detail in
Section 3.1.3. Nevertheless it is astonishing that these simple models lead to the quite
good results of 2.9 +0.2% test error on 100000 samples on the acceptor and 5.3 + 0.2%
on the donor site (cf. Table 4.2).

4.2.2 Fully Connected HMMs

Another greedy approach, is to train fully connected HMMs on the whole set of se-
quences using the Baum Welch algorithm. Then the parameters to be adjusted are the
number of states and the pseudocount. We were pampered by the results we got from
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linear HMMs and therefore expected even better ones from fully connected HMMs in
our experiments. We fixed all HMMs to be first order and trained 252 positive and 252
negative HMMs on 50000 acceptor training samples using all possible combination of
pseudo count

IT € {5000, 1000, 200, 50,10, 5,1,10 1,10 72,10 2,10%,1075,107%, 0}

and number of states n € {20, 25, 27,29, 30,...,39,40,45,50,60}. Originally we intended
to train each parameter combination two times on 5 different splits of the training set.
However although we spread this task over 50 CPUs (standard PCs, mostly PIII 550 or
better) not even half of the experiment is finished after 6 months of computation. This
is due the slow Baum Welch training algorithm3?. Furthermore it converges slowly and
thus very often required the maximum number of iterations (was set to 150). Even when
the training algorithm converged (the model probability did not change more than 103
in 5 subsequent reestimation steps) the estimate was very poor. The algorithm is only
guaranteed to find a local maximum, which was far away from the global optimum.

70 We were largely disappointed by the re-
sults (cf. Fig. 4.2) we got. Since the length
of all sequences was 50 base pairs, and a
50 state model could potentially converge
to a linear HMM of order 1. None of the
results is even close to the performance
of a linear HMM which already achieves
results of > 94% accuracy, see Fig. 3.4.
Considering that the Baum Welch training
only optimises the model probability this
seems reasonable. However comparing the
performance of linear and fully connected
HMMs in terms of the model probabil-
ity, still all linear HMMs outperform Baum

0
0.6 0.62 0.64 0.66 0.68 0.7 0.72 0.74 0.76

Figure 4.2: Histogram of the classification per-
formance on the validation set.(x-axis accuracy
0...1, y-axis number of occurences of this value)
As classifier, we used we used the 1035 positive
HMMs that finished Baum Welch training com-
bined with a single state negative HMMs. We
set the threshold on the validation set, such that
maximum performance was achieved. Note that
the worst possible result, i.e., to consider all splice
sites are decoys is achieved very often (> 50
times). Since the validation set consists of 1938
positive and 3062 negative (in total 5000) sam-
ples, the worst performance that can be achieved
is 61.24%

Welch trained fully connected HMMs.

To conclude: The model probability, basi-
cally being a constrained polynomial f(x)
of the high dimensional vector x has many
local maxima when optimised via Baum
Welch training. However since the prob-
lem of finding

m)in f(x)

is NP-Hard [26] and even the problem of
computing the optimal with a certain ac-
curacy € > 0 is NP-Hard [25], local opti-

misation methods as, e.g., Baum Welch, Newton or Gradient Decent are used.

To get a preliminary idea on how hopeless®! the situation is, we used Baum Welch train-

30We tried hard to optimise the algorithm, i.e., we use forward/backward tables and “log-tables” to
substitute the often occuring computation log(e® + e¥) by a table lookup [47].

31This experiment requires already 1600 hours on the APAC-cluster (almost half a year of computa-
tion on a single Athlon XP 1GHz). Theoretically one would have to do this experiment for each
combination of parameters.
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ing to estimate 100 37-state HMMs using fixed pseudocount 10~'% and order 1 on an even
smaller dataset3?, allowing 500 iterations, while the HMMs initial parameters were set
randomly. A single state HMM was trained to be used as the negative model. We then
compared the model probability of the HMMs on the training set (cf. Fig. 4.2.2). The
best model accomplished a log-likelihood of —59.2, the worst —62.1 leading to an average
and standard deviation of —61 4 0.43. While this is an improvement compared with a
completely uniform HMM (each emission probability is set to 1/4, start/end/transition
probabilities are 1/37) whose model probability is —69.3. Still our specially designed
HMMs using the same number of states achieve —59.0 in log-likelihood and 5.3% in
classification error. Only 3 of 100 trained HMMs give comparable results in terms of
model probability (5 in terms of classication performance).

Even a simple linear HMM is already at
—59.3 in log-likelihood and 5.4% classifi-
cation error. Therefore the use of a greedy
Baum Welch training without prior knowl-
edge seems to be a waste of time. How-
ever the comparison with a first order lin-
ear HMM is slightly unfair, since it al-
ready consists of 50 states. We tried to fur-
® ther improve HMM performance by setting
1 “reasonable” initial parameters. For ex-
ample we started Baum Welch training on
an already trained linear HMM, treating
it like a standard fully connected HMM.
We altered the parameters slightly since
o the linear solution is already a local max-
Figure 4.3: Quality of Baum Welch training. We  jmum and retrained. Performance did not
trained 100 HMMs via Baum Welch. The up- 3,0 4v6 Tn another we tried to add states
per curve illustrates the model probability for the ) o
training set, while the figure below shows the clas- to the linear model, initialising the new
sification performance on the validation set. parameters randomly. At first we added
one by one and trained. Performance de-
creased with each state. Then we added small sets of states to linear HMMs at once
which lead to similiar results.
We realised that all one can do to circumvent local maxima, is to

i
\‘ I
0 10 20 30

5 L

a) enhance the optimisation technique, e.g., by implementing simulated annealing as in
[17]

b) simplify the task (e.g., train a number of models on only parts of the sequences)

c) simplify the model structure (e.g., train HMMs with specific structure, like a con-
catenation of a linear HMM and fully connected one).

In this work we decided to focus on the latter two with which we will be dealing in the
next subsection.

4.2.3 Specially Designed HMMs

Having learned our lesson on Baum Welch training, we split the positive data into two
parts, intron and exon. In the acceptor case all bases up to AG formed the intron-part

32run 1 on 10000 positive acceptor samples
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and the remaining the exon-part. On donor sites all bases before GT form the exon-part
and the rest starting with the consensus dint is the intron. Since linear HMMs worked
well the question, “what is so special about linear HMMs” arises. We think that these
static models, not tolerating insertions or deletions, help to fix the consensus dint in
classification. While this is a reasonable explanation for classification and especially
since negative samples were generated by shifting the window (cf. Section 3.1.2), it
does not explain why they give good performance in terms of log-likelihood. However
when one does classification using a linear HMM on only the intron part, performance
drops only slightly. Thus almost all of the splicing information is contained in the intron,
while still some correlations in the exon help to increase the performance.

We therefore trained linear HMMs on the intron part and small fully connected HMMs
on the exon part and used their concatenation as the final positive model, leading to a
HMM as shown in Fig. 4.4. When doing so, one implicitly assumes that there are no

dependencies between bases in the intron and bases in the exon33.

*-0-0-0 0-0-0-0-

0 1 2 3 21 22 23 A G

000 0-0-0-0
T

G 27 28 29 46 47 48 49

Figure 4.4: Positive acceptor (top) and positive donor models (bottom).

However this approach of splitting the data into two parts does not work on the negative
samples, since these are shifted and one does not know either the beginning nor the end
of the exon or intron. Nevertheless one can exploit the information that negative samples
are constructed by moving a window of length 50 over sequences of length 100, where
the splice site is almost in the middle (cf. Section 3.1.2). Therefore in all cases positive
and negative samples are overlapping. We can use this to construct3* negative HMMs,
that embeds the positive HMMs utilising it to model parts of either the intron or exon.
For that reason we add 25 states in the acceptor case to the left and 25 states to the
right of the donor model (cf. Fig. 4.5).

To obtain the positive acceptor models we set the pseudocount and order to IT = 1010
and €2 = 1 and independently trained the linear and fully connected HMMs where the
latter had 5 to 14 states. Their concatentation as in Fig. 4.4 was used as the splice
site model. We evaluated these HMMs on the validation set using no negative model
and chose the HMM performing best to create a negative model, which was obtained
by taking a linear HMM of 25 states and appending the best positive model to it. We
then used Baum Welch training to estimate the emissision probabilities by ; for the

3%Having said that, we have in fact recently discovered that there are some dependencies. Thus this
assumption is not quite true.
34This awesome idea is due G. Rétsch.
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Figure 4.5: Negative acceptor (top) and negative donor models (bottom).

new states 0'...24' and the new start and end state distribution, whereas the former

start state in the positive model (state number 0) was not allowed to be a start state
in the negative HMM, see Fig. 4.5. In the training process of the positive HMMs, the
convergence criteria was set to 500 iterations and a maximum change of 1075. Since
the negative model is more complex (about 55 states) the computation of forward and
backward variables requires more time. However since only very few parameters have
to be learned, we allowed only 20 iterations and a maximum change of 10~3. When
doing so, we even exceed all linear HMMs of higher order in the acceptor case, as one
can see in Table 4.2, e.g., on 10000 samples the linear HMMs achieved 3.8% and these
fine tuned HMMs 2.6% test error. In analogy we repeated this experiment on the donor
sites. Here instead of inhibiting the start state of the positive model we did not allow
the model to terminate in the former end state (state labeled 49). Unfortunately this
technique lead to a very large test error on the donor sites (> 20% on 10000 examples).
One possible cause is the, in one class testing, already poorly performing positive donor
model. We thus used a single state model trained on the decoys as negative model and
repeated the test procedure. Performance remained on a low level, which was likely due
to the still poorly performing positive HMM, which gives more than 10% test error. As
a result the “positive” part contained in the “negative” sequence could not be found
by the embedded positive HMM. Hence we tried further to increase the performance
of the positive donor model, by setting the order to 3 and the pseudocount to 5 as
is suggested by Fig. 3.9 on 10000 samples.?®> We obtained a new linear HMM on the
intron part and Baum Welch trained small full connected HMMs of 1 to 17 states on
the exon part. For the latter we decreased the pseudo count to 0.1 since these models
have fewer parameters. We then used the concatenation of these models as in Fig. 4.5

35In fact one would have to include order and pseudo count in the cross validation procedure. How-
ever training higher order HMMs is computationally more expensive (due to the higher number of
parameters) and thus this is beyond this work.
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as the positive model. Note that the linear part is of higher order and thus one has to
employ special training to not loose higher order information at the left hand boundary.
In the training process of negative HMMs we set the pseudo count to the even lower
value of 0.01 to allow finer adjustment of the new parameters. In testing the positive
HMM we used a linear HMM of order 3 as the negative model. In many cases one could
observe that HMMs with only a 1 state donor model slightly outperformed the others,
but in combination with their corresponding negative model performed poorly. For
that reason we decided to not preselect the best positive HMM, but obtained the best
possible combination of positive and corresponding negative HMM via cross validation.
In the end we get 5.3% test error on 10000 samples compared with 6.3% which is what
the linear models could achieve. Interestingly the model selection result on all but
one of the runs®® chose 3 state HMMs for the exon part, which is in good biological
agreement. Hence each state models the statistics of triplets (recall that the HMMs
are all third order) for one of the three possible reading frames (see Section 1.2 for a
biological introduction).

Up to this point, we have only dealt with descriptive models. We were able to tune
them to perform quite well. However as we will see in the next sections, these results
can still be improved by using discriminative techniques.

4.2.4 Locality Improved Kernel

The first candidate in our list of discriminative models uses a SVM whose kernel is the
LIK. This kernel can be optimised such that one can efficiently train on large sample
sizes. We used the speed tuned kernel of [55] in our experiments. Recall that the
parameters of the LIK are the window width [ and the degree d; that controls how
many terms are used in this window, i.e., these parameters describe the amount of local
information to be used. The remaining parameter ds controls the amount of information
between windows, which is as such global information and was set to dz € {1, 2} for this
problem, but best performance was achieved using ds = 1.

Complete model selection was performed on the local parameters [,d; as: [ € {2,3,4}
and d; € {2,3,4,5,6,7}. In each setup the regularising term of the SVM was choosen to
be one of C € {0.8,1,1.5,3,7,10}. We tried larger windows of [ € {5,6}. Since these did
not show good performance they were excluded from the model selection. As one can see
in Table 4.2 the LIK beats linear HMMs for all donor results, while performing similiar
on acceptor results. We showed in Section 2.4.4, that the LIK is basically equivalent to
the FK derived from constant linear HMMs. One can thus hope to get better results
when using more clever underlying models, like the fine tuned HMMs in Fig. 4.4.

4.2.5 Fisher Kernel and TOP Kernel

We used the Fisher and TOP kernel in combination with our specially designed HMMs.?7
This “hybrid” learner, a combination of discriminative and generative HMMs does in-
deed outperform all stand alone models and thus we could improve the already very
good results we got using HMMs and the LIK. While we observed empirical superiority
of the TOP kernel in [49] both methods perform equally well on our dataset, i.e., using
the FK we achieve 2.3% on the acceptor sites compared with 2.2% using TOP.

36 dataset splits

3TWhile one could derive these from linear HMMs, they require special treatment, since they are higher
order, i.e., explicit computation of the TOP /Fisher feature scores is not anymore possible due to
very high dimensional feature spaces (a sixth order model requires =~ 15GB of memory).
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Test error of our methods on C. elegans

Acceptor
Linear ‘ HMM ‘ LIK ‘ FK ‘ TOP
100 8.1+0.6% | 10.7+2.8% 7.6£1.0% | 13.0+£5.7% | 22.44+2.3%
1000 5.0+0.3% | 2.84+0.1% 5.240.2% 2.840.2% 4.940.5%
10000 3.8+0.3% 2.6+0.2% 3.940.2% | 2.3+0.2% | 2.2+0.2%
100000 2.9+0.2% 2.440.2% 2.7+£0.2% ~1.9% ~1.9%
Donor
Linear | HMM | LIK | FK | TOP
100 | 14.9+1.6% | 16.8+0.6% | 11.0+0.3% | 26.6+6.4% | 29.7+0.5%
1000 8.9+0.3% 9.4+0.6% 7.6+0.5% | 11.5+1.0% | 19.8+1.0%
10000 6.3+£0.1% | 5.3+0.5% 6.3+£0.3% | 5.2+0.4% 5.6+£0.3%
100000 5.3£0.2% | 5.0+£0.4% 5.0+0.1% n.a. n.a.
‘ Sensitivity of our methods on C. elegans
Acceptor
Linear | HMM | LIK | FK TOP
100 | 90.4+£0.3% | 90.1+2.1% | 91.5+0.9% | 84.6+10.5% | 69.0+£7.5%
1000 | 94.4+0.4% | 96.7+0.3% | 93.7£1.1% 96.8+0.2% | 93.4+1.7%
10000 | 94.2+1.1% | 96.7+0.7% | 95.2+0.8% 96.84+0.6% | 96.8+0.4%
100000 | 95.7+£0.9% | 97.0+0.8% | 96.5+0.8% n.a. n.a.
Donor
Linear | HMM | LIK | FK | TOP
100 | 87.4+8.0% | 62.8+2.2% | 82.9+7.2% 43.7£9.9% | 00.0+0.0%
1000 | 83.4+2.4% | 82.2+2.6% | 84.7+2.2% 87.5+2.2% | 80.2+3.6%
10000 | 85.24+0.9% | 90.0+1.7% | 88.5+0.9% 90.5+1.2% | 90.6+1.4%
100000 | 90.0+£1.0% | 91.0+1.3% | 90.3+£0.9% n.a. n.a.
‘ Specificity of our methods on C. elegans
Acceptor
Linear | HMM | LIK | FK | TOP
100 | 92.8+0.9% | 88.7+£0.4% | 92.9+1.0% 88.5+3.7% 82.8+5.3%
1000 | 95.3+0.3% | 97.5+0.2% | 95.44+0.8% 97.4+0.4% 96.0+0.8%
10000 | 97.4+0.4% | 98.0+£0.3% | 96.7+£0.6% 98.3+0.2% 98.44+0.1%
100000 | 98.0+0.4% | 98.0+0.3% | 97.8+0.5% n.a. n.a.
Donor
Linear ‘ HMM ‘ LIK ‘ FK ‘ TOP
100 | 82.8+7.0% | 91.9+1.3% | 91.6+3.2% | 85.9+11.8% | 100.0+0.0%
1000 | 94.4+1.1% | 94.1+£1.2% | 95.7£1.0% 88.9+1.8% 80.2+2.7%
10000 | 97.3+£0.4% | 96.7+0.8% | 96.0+0.5% 96.7+0.4% 96.0+0.6%
100000 | 96.7+0.3% | 96.6+0.2% | 97.0+£0.4% n.a. n.a.

Table 4.2: Test errors of our 4 methods on 100-10000 examples on the acceptor and donor classification

task. The shown results are averaged over 5 different runs and the standard deviation is given.
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On donor sites both kernels cannot improve the result of the HMM (FK 5.2%, TOP
5.6%) (cf. Table 4.2). Since the number of dimensions is ~ 5700 (acceptor) and ~ 8300
(donor) and the number of support vectors (SVs) is more than twice as large on donor
sites (on acceptor sites the TOP and FK SVM solutions had ~ 1000 SVs while on donor
sites the FK had ~ 2000 and TOP = 3000 SVs) we think, the SVM will require more
samples to obtain a better solution. Furthermore we had to normalise the feature vectors
as explained in Section 3.1.3 without which the SVMs optimiser ran into numerical
problems (see Table 3.1 how the performance changes when different normalisation
techniques are used).

4.2.6 Comparison and Discussion

In the experiments we used different machine learning techniques, like linear and fine
tuned HMMs and the Locality Improved, Fisher and TOP Kernel embedded into SVMs.

45 7

To compare these methods, the
. - ! = test error on acceptor and donor
5 . - — sites on 10000 samples is shown

] in Fig. 4.6. In this figure, the
s violet and blue bars denote the
], standard deviation around the
p mean of the test error. As one
‘ can see the task to classify ac-
05 ‘ ceptor sites seems to be simpler
e e e e e compared to the donor classifica-

o e tion task. On the acceptor sites,
Figure 4.6: Performance of our methods on acceptor (left) 1o hest classification  results

and donor (right) sites on 10000 samples. were achieved using the TOP
and Fisher kernel, closely followed by the fine tuned HMM. The computationally
efficient methods, as the linear models and the LIK perform equally well, but are
outperformed by the other techniques. The picture is different for donor sites. There,
the TOP and FK methods could not improve the HMM (for possible reasons see
above), which thus gives best performance followed by the linear models and FK which
again perform equally well.

While we presented the test set error in Table 4.2 we did not yet discuss sensitivity and
specificity, which are stated for the above error. Sensitivity, is the ratio [8] between
the number of correctly classified positives (true positives (tp)) and the number of all
positives (true positives together with false negatives (fn)), i.e.,

tp

sensitivity = —————.
tp+ fn

Specificity on the other hand is the ratio of correctly classified negatives (true negatives
(tp)) and the number of all negatives (sum of false positives (fp) and true negatives),
ie.,

tn
fp+in

While one can observe the same tendencies as for the test error, for both sensitivity
and specificity, the sensitivity of TOP on small samples sizes is very low (on the donor
almost zero on 100 samples). This clearly indicates that the number of samples is not

speci ficity =
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enough to obtain a reasonable estimate using SVMs.

Results in terms of specificity and sensitivity are given in [11, 13, 40]. While in these
articles different splice site datasets were used and thus performance of our methods
cannot be directly compared, we noticed that in all of these papers, results for linear
HMMs, while named differently3®, were presented.

T ' AN D e —  To compare the performance
/ of our classifiers, we com-
/ puted the Receiver Operating
Characterstic (ROC) Curve
[19], which plots 1-specificity
versus sensitivity (this is the
same as false positives vs. true
positives on a relative scale).
We already compared our
methods in terms of test-set
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o
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€error. However since the
0s- : R : RS L test error largely depends
T HINEAR on the number and ratio of
— TOP oy .
FK positive and negative samples
0.4 L 1 ]
0.001 0.01 0 *  (e.g., when the number of

1-specificity . .
negative samples is much

i , e : e higher than the number of
- positive samples a classifier
can achieve a very small test

set error by classifying all

samples as negatives) the

ROC Curve provides a more

data independent performance

measure. The sensitivity and
specificity as shown in Table

4.2 make up only a single

point on the ROC Curve,

- which is the point of minimal

— LINEAR validation set test error. In

— HMM
— TOP the ROC one can select a

FK

oot 001 o i certain specificity and read off

ety the corresponding sensitivity
for each classifier. Hence one
can choose a certain threshold
which best fits the problem (usually the costs for false positives and false negatives
determine the threshold). What does the ROC tell about the performance of our
methods? First of all, in tendency, the higher the sensitivity and specificity the better
the classifier. While we again observe which methods outperform others, as already
discussed in our comparison of the test error, some interesting properties need to be
emphasised: In both curves of the LIK and the linear HMM perform almost identically.
However in Table 4.2 the LIK outperforms the linear method when the number of
samples becomes larger. This coincides with the observation of [35]. It furthermore
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Figure 4.7: ROC Curves for comparison of our classifiers on the
acceptor (top) and donor sites (bottom).

38In [40] they are called (Conditional) Consensus Matrices, in [13] they are referred to as Weighted
Matrix- and Weighted Array Models, while they are named Independent and Chain in [11].
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suggests to investigate performance of the Fisher and TOP Kernel derived from linear
HMMs and even to create a stand alone kernel from linear HMMs, which can be
computed as efficient as the LIK.

Another interesting property is that the TOP and FK remain below the performance
level of the HMM up to a certain threshold (for the acceptor case). Thus depending on
the desired specificity one has to choose the classifier which gives highest sensitivity.

4.3 Human
4.3.1 Preliminary Results on the Human Genome

For now, we did not test all of our methods on human splice sites, but only investigated
the performance of linear models. As one can see, the maximum sample size is only
25000. While we could utilise 100000 samples on C. elegans, the number of EST
confirmed sequences is still much lower on the human. However we generated the data
in the same way as we did for the nematode. In this process we achieved very similiar
ratios of

‘ Performance of linear HMMs on Human Splice Sites

Acceptor Donor
Test Error ‘ Sens. ‘ Spec. | Test Error ‘ Sens. ‘ Spec.
100 | 12.5+1.4% | 77.2+5.5% | 92.0+0.6% | 9.6+0.7% | 83.6+2.7% | 93.2+1.8%
1000 5.5+0.5% | 91.6+1.1% | 95.8+0.5% | 5.4+£0.2% | 90.4+0.6% | 96.3+0.4%
10000 3.7£0.2% | 94.1£1.0% | 97.3£4.3% | 3.2+£0.2% | 94.5+0.8% | 97.7£0.3%
25000 3.44£0.1% | 94.246.9% | 97.6+£0.4% | 2.7£0.1% | 94.8+0.5% | 98.3+£0.2%

Table 4.3: Test errors of linear HMMs on 100-10000 examples on the human Acceptor and Donor sites.
The shown results are averaged over 5 different runs and the standard deviation is given.

positive and negative samples. When looking at Table 4.3 one notices that in comparison
to the worm the linear HMMs achieved better performance on donor samples than on
the acceptor. This might indicate a certain intrinsic property of the human donor sites,
which cannot be observed on C. elegans. However it might as well be an artifact caused
by not enough or not identically distributed training samples.

Since the linear HMMs trained on human splice sites perform equally well compared
with linear HMMs trained on the nematode, one would expect that our other machine
learning techniques also achieve the very same good performance on human DNA.
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5 Conclusion and QOutlook

In our work, we presented new methods for splice site recognition. At first, we
introduced the reader to genetics and machine learning (ML) (cf. Section 1.2 and 2),
where we focused on two successful ML approaches: the Hidden Markov Model and the
Support Vector Machine (cf. Section 2.2 and 2.3). We explained how prior knowledge
can be incorporated into SVMs using kernel functions like the Locality Improved
Kernel, and the Fisher and TOP kernels (see Section 2.4). While the LIK is directly
applicable to SVM learning, the TOP and Fisher kernels, defined on generative models,
have to be derived from the generative model that is used. We computed these kernels
from HMMs (cf. Appendix A.1) and demonstrated how one can successfully combine
HMMs with discriminative SVM learning using the Fisher and TOP kernels.

We proved that the already established Locality Improved Kernel is a special case
of the Fisher Kernel derived from certain HMMs and thus provided new insight into
the relationship between the Fisher and the LIK (cf. Appendix A.2). Moreover, we
demonstrated that the FK derived from fine tuned HMMs performs favourably.

These propositions are supported by extensive experiments on splice sites. In the
experimental section (see Section 4), we first compared our SVM methods to a number
of standard machine learning techniques on a benchmark dataset and pointed out that
our suggested methods are superior by far to previous approaches.

We underscored the importance of careful data selection and data analysis before
actually applying ML methods (see Section 3). We described in detail the process of
extracting splice sites and decoys to obtain training and test samples and analysed these
datasets for the nematode C.elegans and the human species. We applied linear HMMs
to these datasets and showed that one can already achieve good results using these sim-
ple models when performing cross validation over a large set of parameters. We trained
fully connected HMMs using the Baum Welch algorithm on the data sets and pointed
out, in a very detailed manner, why greedy application of the Baum Welch algorithm
fails and described ways to overcome this problem. As one possible “workaround”,
we simplified the model structure by concatenating linear and fully connected HMMs
and showed that these specially developed HMMs are well suited for the detection of
splice sites. We incorporated the prior knowledge of these fine tuned HMMs into SVMs
using the TOP and Fisher kernels and thus demonstrated that a combination of gener-
ative and discriminative learning machines can lead to even better classifiers in practice.

Future work will focus on enhancing the ML techniques for splice site detection. On the
one hand, we will focus on other training algorithms for HMMs, e.g., we will train HMMs
using other assumptions about the dependence between the observation sequences (e.g.,
uniform dependence cf. [53]) and simulated annealing approaches to overcome the prob-
lem of local minima. We will enhance the genefinder program, such that prior knowl-
edge in the structure of HMMs can be taken into account. For example, we can force the
HMM to be in a fixed state (or to give fixed output) at a certain time. This will allow
training of certain parameters only and will implicitly compute the TOP and Fisher
Kernel to allow higher order HMMs to be taken into account. On the other hand, we
will try to improve the SVM solution by giving greater weight to “important” dimen-
sions in the TOP and Fisher feature vectors or by using other preprocessing techniques
like Principial Component Analysis (PCA). We will make use of other kernels like, e.g.,
String Kernels [31] and try other graphical models, like, e.g., Bayes Nets that might be
better suited to incorporating prior knowledge about the splicing task.
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Appendix

A Proofs

A.1 The Gradient of the Model Probability

Since the derivatives of Pr[o|@] for given o and @ with resprect to all 8 are needed for
computation of, e.g., Fisher Kernel and TOP Kernel Scores their derivation follows:

Lemma A.1l.

8 Pro|6]

The derivatives of the model probability (2.1) are given by:

_ gk
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0 Pr[o|6)] K
b)) ——— =aj_
) Dar T-1
OPr[o|0] —
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Before proving

(c) and (d), we will prepare the following lemma.
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Lemma A.2 (Partial derivatives of a polynomial). Let x = {z1, z2,...

set of variables and p(x) a polynomial defined as follows:
n
p(x) =p(T1,...,70) = Hmsi with s; € {1,...,m}

Then the partial derivative of the polynomial with respect to xy is given by:

6
soer) = g2 T =3 11

J=1,5#1
Proof. We proof by induction:
n=1:
iw s 1, s1=k
Oyt~ UE T 1 0, otherwise

n—>n-+1:

n+1
| ( .
a. Ls; = H'/I"Sz Lsn+1 H$sz . Lspya
Ok ;-3 O i=1
n+1
_ E:éﬂ, 11 x%-+II$& S
=1 j=1j#1
n+1
- Yo 1 o
=1 =l

,Tm} be a

The first equation follows directly from the application of the product rule and the

second follows by induction.

O

This lemma turns out to be very useful when calculating the partial derivatives with

respect to a;; and b;; :

Proof. (c) of Lemma A.1.

8 Prlo|6]
Bakl
T—2
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= E: Psobso,00 Ha’stast+1b3t+1,0t+1 Qsp 1
aakl

all 803--98T—1 t=0

T—2 T
= Zpsobso,oOCIsT_l H (bst+1,0t+1 (9 (H St75t+1>

all s t=0
T-2 T— T=T-2
= ZPSObSO,OOQST_l H 5t+170t+1 Z sto2k 05041, H Gsrsrq1
all s t=0 t=0 7=0,T#L
T-2 T=T-2
= Zpsobso,vo' 53t72k55t+lazlb5t+170t+1 bST+1,OT+1aSr,ST+1

all s t=0 T=0,T#t

(A.3)

qST—l(A'4)
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T-2 T=T-2
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t=0 \alls 7=0,7#t
T-2 T=T-2
= E : E : Psobso,00bl,0011 H (bST+1,0T+1 asT,ST-H) Qs (A.6)
t=0 \all s,s¢=2g,5¢+1=2; 7=0,T#t
T-2 T=t—1
= bios 11 E : Psobso,00 H bsri1,0041Gs7,5,41 |
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t=0
T-2
_ k l
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t=0
We are summing over all sg,...,s7_1, i€, alls €zxzx---xz =z!. Eq. (A.1) follows

from Lemma 2.5. Then we pull out the independent variables, such that we can apply
Lemma A.2 and end up with Eq. (A.3). After rearranging the by, ,, — product back into
the as, .., product and switching the order of summation we obtain Eq. (A.5). The
application of Kronecker’s d leads to Eq. (A.6) such that we can split up the summation
as in Eq. (A.7). The first term in the small brackets that is summed up is the joint prob-

ability of the state sequence sg,...,S:—1,2; and the observation sequence og,...,0:_1
(for the second term z;, $¢12,...,87—1 and 042, ...,0r_1 respectively). Thus the sum-
mation over the state sequences marginalises out leading to Eq. (A.8). We conclude
with Eq. (A.9) by using the definition of the forward and backward variables. O
Proof. (d)
Pr[o|@
Prlol6]
9

P>

all sg,..yST—1
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all sg,...,s7_1

Q

T-1 T—2
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7=0,7#t t=0

T—1 T—2 T—2

= dos,e1 E : bso,00 H bs 1,041 |+ | Pso H Qsyys04195r 1 [A12)
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T—1 1 T—2

= E :60t,el E 7 | Psobso.00 H Gsys04105041,0001d57-1 (A.13)
t=0 all s,5p=z, 0% =0
T—1 T—1

- 0t,€] - 0t,€] b ( . )
t=0 all s,sp=2j, Rl =0 ko€l

Similar to the previous proof we rearrange the model probability into two parts: A part
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depending on by; and one independent of bg; which gives Eq. (A.10). We then apply
Lemma A.2 in Eq. (A.11), change the order of the summations, apply Kronecker’s 4,
pull out by, o, which results in Eq. (A.12). The combination of the products leads to
Eq. (A.13). The term in brackets is the path probability, that is summed over all paths
in which the model is at time ¢ in state zx, concluding in Eq. (A.14). O

Lemma A.3. Defining #x as the number of occurences of x in Pr[s, 0|@], the derivatives
of the probability of a given state sequence are given by:

Pl Pisole

0 ,0/0 ,0(@
b) % S Pr[sqko‘ ]
c) %jm = (#ak) %};\9]
9) %;w] = (#br1) L[Z;W]

Proof. Recall that Pr[s,0]8] = paybsg.o0 (1‘[{;02 ast,st+1bst+l,ot+l) gsr_.. Eq. (a) and
Eqg. (b) are correct, since the derivative is either zero when sy # 2z, respectively
sT_1 # 2, or it is the path probability divided by p; respectively gi. Note that pg, qx # 0
for paths with probability > 0. Since we calculate the derivatives of the most probable
path in practice, this should be the case (otherwise, the derivatives are simply 0).

Eq. (c) and Eq. (d) follow directly from %ﬁz(y) =n-z" 1. p(y)=n- ]%. O

Lemma A.4. The derivatives of the model probability of a linear HMM (cf. Definition
2.138), i.e., a HMM where the underlying chain is linear by setting n = T, py = 1,
aiiv1 =1, an—1; =0, and g,—1 = 1 are given by:

0 Pr[o|6)] Pr[o|6]

by P by

We use linear HMMs extensively in the experimental section, due to their simplicity
and therefore very fast training methods.
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A.2 Connection between Locality Improved and Fisher Kernel

Instead of presenting the whole proof, we will start with the simplest non-trivial ex-
ample. Later on we briefly explain how one would extend this example to the general
case.

Example A.5. We will give an example for the simplest non-trivial case, i.e., the
parameters of the LIK are set tol = 1,dy = 2,dy = 1. First we will derive the feature
vectors of the LIK, then we introduce you to the structure of a Markov Model from that
we derive the FK. We then adjust the parameters of the MM such that its FK satisfies
the claim.

Recall the definition of the Locality Improved Kernel:

T-1 [ +i ar\ @
Krr(x,x') = Z Z wjly(x, %)
t=0 \j=—1

One can see that the LIK is not well defined for the boundaries (i.e., fort =0, j = —1
Iy_1 is not defined). As a result it is used as

d
T-1-1 [ + di\ ™
Kri(x,x') = Z ijIt+j(xaxl)
t=0+1 \j=—1

in experiments. Doing so we find all of the windows lying completely within the bound-
aries. For convenience we use I := Iy(x,x') and I s = I.1,1I; synonymously:

2

T-2 +1
Krr(x,x') = Z wjlyj(x,x')
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t=1
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where Gy* = w?,, ai* = (w?; +wf), &° = (w2, + wj + w?y), ar_1 = (w§ + wiy),
2 2

= 2(w_1wo + wow41), Gp—1,41 = 2W_1W41
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—_— 2
and aT_g,T_l = 2w0w+1.

As we see one can isolate the matching function Iy for all times t, such that there is
a constant factor in front of it, i.e., if for fixed, but arbitrary times t the observations
match xy = x}, the value that contributes to the LIK is constant regardless of the symbols
that match. To write the LIK as inner product of a score vector s(x), i.e., as

Kri(x,x') =s(x) - s(x')

we need to model the match function I(x,x") such that it can be written as dot product
of two vectors. Thus we use the binary representation of the each symbol in vector x,
i.e., we define

At(x) = (5$t;€07 5wt,en RER) 6$t76m71)—r'

This way we succesfully modelled I;(x,x") = Ay(x) - A¢(x'), where Ay(x) depends only
on x and Ay(x') only on x'. Matchings of more than one symbol are modeled by

Ir,s,t(X,X,) = A’r,s,t(x) . Ar,s,t(xl),

where
A'r,s,t(x) = (Ar(x)Ta As(x)Ta At(X)T)T'

Thus we can proceed to rewrite the LIK as dot product

apDo(x)
( a1 Aq(x)

ar_1Ar_1(x)

aoAo(x')
( a1 (x)

ar—1A7—1(x')
/

ag1 Ao (x) ag1 Ao1 (x')
a12A12(x) a2 Aq2(x’)
KL[(X,X,) = . (A15)
ar—o7—1A7_21-1(%) ar—2r—1A1—27-1(x")
a02202(x) a02802(x")

aj3Aq3(x)

\aT/—?,;—lAT—&T—l(X)

ajzAi3(x’)

\CIIT/—?’;,_;—IAT—&T—I (x')

Recall the definition of the Fisher Kernel for some model 0 :
Krisher(x,x') = s(x,0) " Z(8)'s(x', 0),

where s(x,0) = VlogPr[x|0] is the score vector and Z(0) is the Fisher Information
Matriz. In practice Z is often approzimated as Z;;j(0) = 028;; or even Z = 1p, where
D is the number of parameters.

When using the latter approzimation, one can design a Markov Model (MM) such that
the corresponding Fisher Kernel is equal to the Locality Improved Kernel. To model the
match function I, we consider a MM which consists of 3 submodels of m-T states each,
i.e., for each t there are m (the number of observations) many states, as in Fig. A.1.
The first model is of order 1, the second of order 2 and the third of order 3.3 Each

39We will use the transition probabilities to model the match function I. That is why the order of the
mixture of MMs appears to be off by one. By doing so these MM are in one to one correspondence
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submodel has a fized start and end-state. The submodels are connected via a ‘super’-
start state and end in some ‘super’-end state, where the new parameters are constant
p1, p2, p3. We name the (m - T)? parameters of the first order markov chain, a;; the
(m-T)® and (m-T)* parameters of the second order and third order MM aijk and a;ji
respectively, where 0 < 1,7, k,1 < m -T. We allow state switches only from ‘“time-slice
to time-slice’yi.e., Vi > j+m V i < j—m : a;; = 0, where states from (t — 1) -m to
t-m — 1 belong to time-slice t. In an analogous manner the parameters for the higher
order MM are set, i.e,

vijkl ( 1>7+mVi<j—mV
i>k4+mV j<k—mV
k>l+m V k<l—m):a,-jkl:O.

The remaining parameters will be set later. Thus the number of actual parameters is
Y vi—1 3m2(T — M). We define a meaning for each state, i.e., each state corresponds
to some emission e. This way we can model an observation sequence o with the corre-
sponding state sequence s. Having a closer look at this MM we find that there are three
possible ways of generating the same observation sequence (one for each 0yr). However
the state sequence within each submodel is the same. We will therefore refer to s as
the path corresponding to the observation sequence, regardless of which submodel we are
dealing with. Since the models are connected only in the ‘super’ start and end states,
only states of one of the submodels will be traversed.

Calculating the FK from this MM requires the following steps:

1. Derive the model probability
2. Compute the gradient with respect to the model parameters
3. Formulate the FK

When doing so the model probability is

Pr[o|6]
3
= Z s Pr(s|0 ]
M=1
3
= Y puPrlso = zig, 81 = Ziy -+, 571 = Zip—1|00]
M=1
3
= Pm PI‘[ST_1 = ZZ'T71 |3T—2 = ZZ'T72, s 980 = Zio, 0M] PI‘[ST_Q = ZZ'T72, L9 80 = ziowM]
M=1
-1 T—1
= D H Pr[3t+1 = zit+1‘st = Ziy» 01] +p2 H Pr[st+1 = Z’it+1|3t = %449 St—1 = Z4y_q5 02]
T-1
+p3 H Prlst1 = 2y |8t = Ziys St—1 = Ziy_ys St—2 = Ziy_,, 03],
t=0

where the last equality follows from the 1st, 2nd and 3rd order property.

to the linear HMMs as introduced in Definition 2.13.
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Figure A.1: The structure of the MM of which the Fisher Kernel is equivalent to the Locality Improved
Kernel for some Z. This ‘super’ -model consist of three submodels, one that is first order, one that is
second order and one that is third order. Each submodel has m - T states, one for each observation at
each time. We do add states e, that are connected to all the other states. These states do only loop
in themselves and finally allow termination. This will satisfy Z := c1p (D is the number of parameters
the MM) as one will see later.

Using this information, the derivatives of the log-likelihood of this linear model with
respect to the parameters a;j, a;ji, a;jk # 0 are given by

OlogPrlo|0] p1 OPr[s|6]

Oaij ~ Pr[s|6] daij (A.16)
_ %.5&%5&%%%@ (A1
DNog Ploldl %' st=2,2051-1,2; 051, st+1,21M (A.19)

0a;jk @ikl

Looking at the dot product of the gradient as given in (A.17),(A.18),(A.19) for two differ-
ent observation sequences x and x’ one realises that we successfully modeled the match
function I using Kronecker’s 6. We now set the remaining parameters a;;, a;jk, @ik to
certain values.

. o 1

Vij (t—1m<j<im: aij = =
7

1

Vijk (t—1)m<j<im,(j—1)m <k <jm: dije = =
1,J

1
Vige (—=1)m <j<im,(j—1)m <k <jm,(k—-1)m <I<km: aju ===
Qi,j.k

As a result the transition probabilities from one slice to another are constant. This
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leads to fixed model probabilites Pr[o|@] and finally fixed Pr[o|@] independent of the
choice of o.

However the parameters do not satisfy the condition of stochasticity. We therefore would
have to normalise the parameters independently in each submodel by dividing a;; by
ma% aiji by m%j, and a;jk; by mﬁ Unfortunately this would result in a constant

model, i.e., the nonzero parameters become a;; = a;j5 = a;jk = % We can work
around this limitation, by introducing an additional state e;s for each submodel, which
is connected to all of the other states, but is only allowed to transition to itself. Thus
the model will loop in that state until it finally terminates. To this state we assign
the observation @, i.e., one will find oneself in these states only for some observation
that is never observed. When doing so, none of the observation o corresponding state
sequences s use €)y making all of the partial derivatives zero. Using this trick one can
assign certain constant transition probabilities to each ‘layer’, i.e., we set a;; = a% + &,

ik = % + i and a; 5k = ﬁ + (i j,x where the new variables denote the transition
probability to the dead state, e.g., { = a;,, and so on.40
We will show that one can scale each layer of the transition probabilites in the MM
independently using the transition probabilities to the dead states, while the model
probability of each submodel will still be some constant, which can be shattered by pas.
Thus one can arbitrarly scale the dimensions in the FK score vector that belong to these
layers of parameters.

We have to still satisfy the stochasticity constraints, i.e.,

1
122% :ZGTi‘l‘fi
J J
and so on. Since these condition need to be fulfilled for arbitrary but fixed a;,... we
introduce a scaling parameter ¢, with which a;; is multiplied, i.e., a;; = %(a% +&). To
find the correct scalings for the parameters a;;,... and the transition probabilities to
the ‘dead’ states, one has to factor out the constant scaling parameter ¢, since we can
only adjust the scale within each submodel using the transitions to the dead states.

Thus the following linear equations have to be fulfilled:

1 1
v /T = Z:-I—fi:m: + &
— Q; a;
J
Vi’j LT = m— +t;
Q4,5
YT 1
Vigg /7 = m——+Gijk
Q4j5,k

Here ¢ corresponds to the normalisation constant in Z = clp that occurs 7' times as
a product in each submodel probability and &;, ti;, (i1 € [0,1] are the transition
probabilities to the ‘dead’ states ep; from the model M.

Since none of the transition probabilities to the dead states depend on each other and
YT o some value larger equal than any on the right hand side, e.g.,

m m m
max = — |
a; Q5 Gijk

“OHowever when one would want to avoid this ‘hack’, we had to change the claim to: We show that
there exists some constant, i.e., observation independent diagonal matrix Z, instead of Z = cl1p.

we can set ¢
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each of these equations can be solved easily. For example, when c is set as in the term
above, V; : a;j = c%q, and a;¢,, = & and so on.

To n9rmalise the non-zero parameters one has to divide the parameters of submodel M
by ¢T. As a result we can define arbitrary scalings for each layer and conclude in

Krigher(%,X') = Vlog Pr{x|6] ¢1p V log Pr{x'|6] = Ky (x,X).

Proof. of Lemma, 2.20: Instead of presenting the whole proof, we will give a brief sketch,
which is supported by the above example.

1. Derive the LIK for arbitrary parameters di,ds,!

2. Separate the I;, . ;. such that there are constant coefficients a; in front of each
IL,....ip- (This is always possible since the LIK is a polynomial)

3. Construct a Markov Model (MM) similiar to the one in the example (see below).
The number of submodels is the largest n in the product of the match functions

4. Derive the Fisher Kernel from this MM

5. Set the parameters independently for each submodel, such that the submodel
probability is constant and the partial derivatives correspond to the a@. One can
always do so since the parameters in each submodel correspond to certain @ in front
of each I;, . ;. and the choice of the parameters in each submodel is independent
from each other.

6. Normalise the submodel parameters using dead states independently.
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B Notations

The set of symbols and functions used throughout this thesis:

I
0,0

SROT TP ONT I DD

£

= RR T zNow

SRR

M
x\

CTgmrQE>>aps

pseudocounts

model parameters

optimal model parameters

estimate for model parameters

the number of states

the number of emissions

the set of states

the set of emissions

n X n matrix of transition probabilities

n X m matrix of emission probabilities
vector of length n containing the start state distribution
vector of length n containing the end state distribution
state %

emission %

transition probabilities

emission probabilities

state sequence

observation sequence of length T'

number of symbols in observation sequence
number of observation sequences (examples, dimension)
the index of the model

forward variables

backward variables

highest probability along a single path
state backtracking table

dimensionality of the space, e.g., IRY

input vectors of dimensionality D

class label

order

degree of, e.g., a polynomial

a lagrange multiplier

the set of lagrange multipliers

the lagrangian

the regularisation parameter

a slack variable

the normal

the bias

effort

probability of x
expected value of x
the signum function
Kronecker’s delta
the kernel function
feature mapping
two norm

classifier or function
ol

the partial derivative with respect to z, i.e., 5=
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C Genefinder

To perform the many experiments presented here, I wrote (with some help of G. Réitsch)
the genefinder program. It is based on the program developed in my student research
project [47]. We subsequently extended the program in order to take advantage of
various learning algorithms, such as SVMs and HMMs.

The program was written in C++ and special emphasise was put on speed.

While it consists of a large number of classes, it is basically structured into

Graphical User Interface (GUI),
GUI library,

HMM,

Kernel,
Preprocessor and

)

)

)
d) SVM,

)

)

) Features.
We implemented a simple text-based GUI. Also, one can use scripts with sequences of
commands to control the program execution. However, since the functionality required
within the GUI is encapsulated in the GUI library, one can easily port it to other GUIs.
Many commands are related to HMM functions, i.e., all the algorithms introduced in
Section 2.2 are implemented. Special types, as ,e.g., linear HMMs (cf. Section 2.2 as
well as higher order HMMs Section 2.2.4 can be utilised.
On the other hand discriminative learners such as SVMs can be used. We embedded the
implementations of [23, 46], and then generalised and speed tuned them for our task.
The SVMs have a generic interface: they can make use of any kind of data since data is
dealt with indirectly using kernel functions only (see Section 2.4). In addition kernels
make use of a caching interface and can be defined on arbitrary features, for example
just D-dimensional vectors x € IR, integers, short integers or sequences. Features on
the other hand can be derived in real time from, e.g., HMMs. One can even use feature
vectors directly from files (without loading the whole set of features into memory). This
is done efficiently through another caching interface. Since features can contain lots of
nuisance-dimensions or are badly scaled, one can assign a chain of preprocessors to
each feature object. In so doing, one can preprocess features in real time or write the
preprocessed features to a file. Possible preprocessors are, e.g., Principal Component
Analysis (PCA), normalisation of the vectors to length 1 or the removal of dimensions
with low variance. All components can be interchanged and extended easily.
While the program has already grown to about 43000 lines of source code, we plan to
further extend it and make it publicly available under the GNU Public License*! in the
near future.

“http://www.gnu.org/
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